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1 Product Space and Joint Distribution

1.1 Product Space

Consider two measurable spaces (Ω1,A1) and (Ω2,A2) . We can define the product space (Ω1 ×
Ω2,A1 ⊗A2) with:

Ω1 × Ω2 = {(ω1, ω2) | ω1 ∈ Ω1, ω2 ∈ Ω2} (1)
A1 ⊗A2 = {A1 ×A2 | A1 ∈ A1, A2 ∈ A2} (2)

1.2 Random Variables on Product Spaces

Consider two random variables:

X1 : (Ω,A, P ) → (Ω1,A1) (3)
X2 : (Ω,A, P ) → (Ω2,A2) (4)

We can define a new random variable:

X := (X1, X2) : (Ω,A, P ) → (Ω1 × Ω2,A1 ⊗A2) (5)
(X1, X2)(ω) = (X1(ω), X2(ω)) (6)

The distribution P(X1,X2) on (Ω1 × Ω2,A1 ⊗A2) is called the joint distribution of X1 and X2.

Example from Machine Learning: (X,Y ) where X is the input data and Y is the label.

1.3 Product Measure

Let (Ω1,A1, P1) and (Ω2,A2, P2) be two probability spaces. We define the product measure
P1 ⊗ P2 on the product space (Ω1 × Ω2,A1 ⊗A2) as:

(P1 ⊗ P2)(A1 ×A2) := P1(A1) · P2(A2) (7)

Theorem: Two RVs X1, X2 are independent if and only if their joint distribution coincides with the
product distribution:

P(X1,X2) = P1 ⊗ P2 (8)
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2 Marginal Distributions

Consider the joint distribution P(X1,X2) of two RVs X := (X1, X2). The marginal distribution of
X with respect to X1 is the original distribution of X1 on (Ω1,A1), namely PX1 . Similarly for X2

as well.

2.1 Example in the Discrete Case

Consider a discrete joint distribution represented as a table:

y\x x1 x2 x3

∑
y1 p11 p12 p13 p11 + p12 + p13 = P (Y = y1)
y2 p21 p22 p23 p21 + p22 + p23 = P (Y = y2)∑

p11 + p21 p12 + p22 p13 + p23
= P (X = x1) = P (X = x2) = P (X = x3)

The row sums represent the marginal distribution with respect to Y , and the column sums represent
the marginal distribution with respect to X.

3 Marginal Distributions in case of Densities

Let X,Y : (Ω,A, P ) → (R,B(R)) and Z := (X,Y ).

Assume that the joint distribution of Z has a density f on R2. Then we have the following statements:

Both X and Y have densities on (R,B(R)) given by:

fX(x) =

∫ ∞

−∞
f(x, y) dy (9)

Here, we take the joint distribution f(x, y) and sum (integrate) over all values of y to obtain the
marginal density of X.

fY (y) =

∫ ∞

−∞
f(x, y) dx (10)

Similarly, we take the joint distribution f(x, y) and sum (integrate) over all values of x to obtain
the marginal density of Y .

X and Y are independent if and only if

f(x, y) = fX(x) · fY (y) almost surely (11)

In other words, the joint density equals the product of the marginal densities almost surely if and
only if X and Y are independent.
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4 Mixed Cases

For example, consider X is a continuous RV with density and Y a discrete RV.

Example: X = image (2d-continuous signal), Y = "cat", "dog", .... (discrete)

4.1 Special Case: Marginals of Multivariate Normal

Consider a 2-dimensional normal random variable X =

(
X1

X2

)
with mean µ =

(
µ1

µ2

)
∈ R2 and

covariance matrix Σ =

(
σ2
1 σ12

σ21 σ2
2

)
.

Then the marginal distribution of X with respect to X1 is again a normal distribution with mean
µ1 and variance σ2

1 .

This can be visualized as "summing up" the joint distribution in the Y -direction to obtain the
marginal distribution with respect to X, which results in a normal distribution.

5 Conditional Distributions

5.1 Discrete Case

We start with the discrete setting. Consider two discrete random variables X and Y defined on a
probability space (Ω,A, P ), each taking finitely or countably many values. For x ∈ R and y ∈ R
with P (Y = y) > 0, we define the conditional probability mass function of X given Y = y as:

P (X = x | Y = y) :=
P (X = x, Y = y)

P (Y = y)
(12)

This quantity defines a new distribution over X for each fixed value of Y . More generally, this
construction induces a family of conditional distributions over X indexed by values of Y .
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5.2 Conditional Probability as Measure

We can reinterpret conditional distributions as conditional probability measures. For discrete ran-
dom variables X and Y , and a measurable set A ∈ A, the conditional distribution of X given Y = y
is the probability measure PX(· | Y = y) such that:

PX(A | Y = y) := P (X ∈ A | Y = y) (13)

5.3 Conditional Densities

Now suppose X,Y are continuous random variables and Z := (X,Y ) has a joint density f(x, y) on
R2. Then the conditional density of X given Y = y is defined as:

fX|Y (x | y) := f(x, y)

fY (y)
for fY (y) > 0 (14)

Here, fY (y) =
∫∞
−∞ f(x, y)dx is the marginal density of Y . The function fX|Y (x | y) is a valid

density in x and satisfies: ∫ ∞

−∞
fX|Y (x | y)dx = 1 (15)

5.4 Gaussian Case: Conditional of Multivariate Normal

Let X =

(
XS

XT

)
∼ N (µ,Σ) where:

µ =

(
µS

µT

)
, Σ =

(
ΣSS ΣST

ΣTS ΣTT

)
(16)

Then the conditional distribution of XS given XT = xT is:

XS | XT = xT ∼ N (µS +ΣSTΣ
−1
TT (xT − µT ), ΣSS − ΣSTΣ

−1
TTΣTS) (17)

This is a core result in multivariate analysis. Even after conditioning, the distribution remains
Gaussian, though its mean and covariance change.

5.5 Geometric Interpretation: Marginalization vs Conditioning

To understand the difference between marginalization and conditioning geometrically, imagine the
joint distribution as a 3D surface over the (X,Y ) plane:

• Marginalization integrates over one axis (e.g., summing out Y ) and projects the total mass
onto the X-axis. This results in the marginal distribution of X.

• Conditioning slices the 3D surface at a fixed value (e.g., Y = y), revealing the profile along
the X-axis at that level. This results in a conditional distribution.

These two operations serve different inferential goals and are foundational to probabilistic modeling.
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6 Conditional Expectation

6.1 Discrete Conditional Expectation

Let X and Y be discrete random variables. For a fixed value X = xi with P (X = xi) > 0, the
conditional expectation of Y given X = xi is:

E[Y | X = xi] =
∑
j

yjP (Y = yj | X = xi) (18)

We can promote this to a random variable by defining:

E[Y | X](ω) := E[Y | X = X(ω)] (19)

This yields a function of X and is itself a random variable measurable with respect to the σ-algebra
generated by X.

6.2 Conditional Expectation: General Definition

Let X be an integrable random variable and G ⊆ A a sub-σ-algebra. Then E[X | G] is defined as
the unique G-measurable function Z such that for all G ∈ G:∫

G

ZdP =

∫
G

XdP (20)

This definition ensures that E[X | G] is the best approximation of X given the information in G.

6.3 Extreme Cases and Intuition

• If X is G-measurable, then E[X | G] = X almost surely.

• If X is independent of G, then E[X | G] = E[X] almost surely.

These facts match our intuitive understanding: if we already know X, there’s no gain from condi-
tioning. If X and G are independent, then conditioning adds no value.

6.4 Conditional Expectation with Densities

Let X,Z be jointly continuous random variables with density f(x, z). Let Y = g(Z) for some
bounded measurable function g. Then the conditional expectation:

E[Y | X] =

∫
g(z)fZ|X(z | x)dz =

∫
g(z)

f(x, z)

fX(x)
dz (21)

This integral defines a function of X, and captures how the expected value of Y varies as we observe
different values of X.
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6.5 Measurability Caveat

All conditional expectations are defined only almost surely, they may differ on sets of measure zero.
This is very important in the continuous case where one must take care regarding measurability and
regular conditional probabilities.

Conditional expectation is fundamental in Bayesian inference, stochastic processes, and learning
theory, where it provides the basis for prediction, filtering, and updating beliefs.

7 General Conditional Expectation: Abstract Definition

We can define conditional expectation even when we do not assume the existence of densities or
discrete structure. Let X be an integrable random variable defined on a probability space (Ω,A, P ),
and let G ⊆ A be a sub-σ-algebra. Then, the conditional expectation of X given G is defined as the
unique G-measurable random variable Z that satisfies:

1. Z is G-measurable

2. For all G ∈ G, we have: ∫
G

Z dP =

∫
G

X dP (22)

This formulation for the conditional expectation can be used across discrete, continuous, and mixed
settings, and extends to arbitrary measurable spaces. This idea is very important for martingales,
filtrations, and stochastic processes.

8 Special Cases and Visualization

Let us revisit two extreme special cases to ground the general theory:

• If X is G-measurable, then E[X | G] = X almost surely, nothing is learned by conditioning.

• If X is independent of G, then E[X | G] = E[X] almost surely, knowledge of G does not help.

To get an intuition for conditional expectation, imagine splitting the entire sample space Ω into a
bunch of non-overlapping regions, say B1, B2,..., where each region corresponds to a specific value
Y = yi. Inside each region Bi, the conditional expectation E[X | Y = yi] tells us the average value
of X when Y = yi. So, we’re essentially computing the average height of X over each piece of the
partition.

If we imagine of X as a function over Ω, then the conditional expectation just replaces X with its
average value on each chunk of the partition. The result is a new function thats flat on each region,
kind of like turning X into a staircase function, where each step represents the expected value given
a different value of Y .
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ω

X(ω)

B1 B2 B3 B4 B5 B6

This figure shows how conditional expectation can be viewed as "flattening" the function X within
each measurable region defined by the information in G.

9 Practical Example: Predicting Exam Scores

Suppose we model student exam performance. Let X denote a student’s final exam score, and let
Y be a categorical variable indicating the number of hours studied(: Y ∈ {low,medium, high}).

We can model the joint distribution (X,Y ) using a mixture model or Gaussian assumption. Based
on historical data, we may estimate:

E[X | Y = low] = 60 (23)
E[X | Y = medium] = 75 (24)

E[X | Y = high] = 88 (25)

Then, E[X | Y ] is a random variable taking values 60, 75, or 88 depending on the category. We
might regress X on Y using linear or nonlinear methods, and E[X | Y ] becomes the predicted score
for a given input.

This conditional expectation could be used in:

• Supervised learning: estimating target variable given features.

• Imputation: predicting missing values.

• Filtering: computing beliefs given partial observations.
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