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1 Expectation and Variance

Definition 1.1 (Lp-space) Let (Ω,A, P ) be a probability space. For 1 ≤ p < ∞ we define

Lp(Ω,A, P ) :=
{
X : Ω → R

∣∣ X measurable and

∫
Ω
|X|p dP < ∞

}
.

For p = ∞ we write L∞ for the space of essentially bounded random variables.

Definition 1.2 (Expectation & Moments) If X ∈ L1(Ω,A, P ), its expectation (or first mo-

ment) is

E[X] :=

∫
Ω
X dP =

∫
R
x dPX(x).

More generally, if k ∈ N and Xk ∈ L1, the k-th moment is

E
[
Xk

]
=

∫
Ω
Xk dP.

Definition 1.3 (Variance & Covariance) For X,Y ∈ L2(Ω,A, P ) the variance and covariance

are defined by

Var(X) := E
[
(X − E[X])2

]
, Cov(X,Y ) := E

[
(X − E[X])(Y − E[Y ])

]
.

2 Markov and Chebyshev Inequalities

2.1 Cauchy–Schwarz Inequality

Theorem 2.1 (Cauchy–Schwarz Inequality) Let x, y ∈ L2(Ω,A, P ). Then,∣∣E[x y]∣∣2 ≤ E
[
x2

]
E
[
y2
]
.

2.2 Markov Inequality

Theorem 2.2 (Markov Inequality) Let g : [0,∞) → [0,∞) be a non-decreasing measurable

function and let X be a non-negative r.v. Then for every a > 0

P
{
X ≥ a

}
≤

E
[
g(X)

]
g(a)

.
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In particular, with g(x) = x we obtain P{X ≥ a} ≤ E[X]
a .

2.3 Chebyshev Inequality

Theorem 2.3 (Chebyshev) For any X ∈ L2 and ε > 0

P
{
|X − E[X]| ≥ ε

}
≤ Var(X)

ε2
.

Chebyshev’s inequality provides a distribution-free upper bound on the probability of large

deviations. It is a key tool in proving the Weak Law of Large Numbers.

3 Probability Distributions

3.1 Discrete Distributions

Definition 3.1 (Uniform Distributions on {1, . . . , n}) A discrete r.v. X is uniform on {1, . . . , n}
if P{X = i} = 1

n for each i.

Definition 3.2 (Binomial Distributions Bin(n, p)) Let n ∈ N and p ∈ (0, 1). If X counts the

number of heads in n independent Bernoulli(p) trials then

P{X = k} =

(
n

k

)
pk(1− p)n−k, k = 0, . . . , n.

Definition 3.3 (Poisson Distributions Pois(λ)) For λ > 0, a r.v. X is Poisson with rate λ if

Parameter λ > 0

P{X = k} = e−λ λk

k!
, k ∈ N0.

It often models the number of arrivals in a fixed time interval.
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3.2 Continuous Distributions

Definition 3.4 (Uniform on [a, b) ]

A continuous r.v. X is uniform on [a, b] if its density is

fX(x) =

(b− a)−1, x ∈ [a, b],

0, otherwise.

x

fX(x)

a b

1/(b− a)

Figure 1: Density of a continuous uniform distribution on [a, b].

Definition 3.5 (Normal N (µ, σ2)) A r.v. X is normal with mean µ and variance σ2 > 0 if its

density is

fµ,σ(x) =
1√
2π σ

exp
(
−(x− µ)2

2σ2

)
.

x

fµ,σ(x)

µ

Figure 2: Normal densities with identical mean µ and different variances (σorange < σgreen < σred).
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4 Multivariate Normal Distribution

Let X = (X1, . . . , Xn)
⊤ ∈ Rn with mean vector µ and covariance matrix Σ. We write X ∼ N (µ,Σ)

if

fµ,Σ(x) =
1√

(2π)n detΣ
exp

(
−1

2(x− µ)⊤Σ−1(x− µ)
)
.

Key facts.

• Σ is symmetric positive semi-definite and thus possesses an eigen-decomposition Σ = QΛQ⊤.

• The contour ellipsoids of fµ,Σ are aligned with the eigenvectors of Σ.

• Independence of components Xi is equivalent to Σ being diagonal.

• If X ∼ N (µ1,Σ1) and Y ∼ N (µ2,Σ2) are independent, then X + Y ∼ N (µ1 + µ2,Σ1 +Σ2).

x1

x2

√
λ1 v1√

λ2 v2

Figure 3: Contours of a bivariate normal distribution with mean (0, 0). Ellipses represent constant
Mahalanobis distance. Red arrows indicate eigenvectors v1, v2 of Σ scaled by

√
λ1 and

√
λ2.
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5 Mixture of Gaussians

Definition 5.1 (Gaussian Mixture Model) Let {πi}ki=1 be non-negative weights satisfying
∑k

i=1 πi =

1, and let fµi,Σi denote Gaussian densities. The Gaussian mixture density is

f(x) =

k∑
i=1

πi fµi,Σi(x).

GMMs combine multiple Gaussian “clusters” and can approximate arbitrary continuous den-

sities. The Expectation–Maximisation (EM) algorithm is the canonical method for parameter

estimation.

x1

x2

N (µ1,Σ1) N (µ2,Σ2)

N (µ3,Σ3)

Figure 4: Contour plot of a 3-component Gaussian mixture in R2. Shaded ellipses depict 1σ and
2σ level sets for each component.
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6 Additional Results

6.1 Weak Law of Large Numbers

Theorem 6.1 (WLLN) Let X1, X2, . . . be i.i.d. with E[Xi] = µ and Var(Xi) = σ2 < ∞. Then

for any ε > 0

Pr
{∣∣∣ 1

n

n∑
i=1

Xi − µ
∣∣∣ > ε

}
−→ 0 (n → ∞).

6.2 Central Limit Theorem

Theorem 6.2 (CLT) Under the same assumptions as the WLLN,

√
n

σ

( 1

n

n∑
i=1

Xi − µ
)

d−→ N (0, 1).
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