CSE 840: Computational Foundations of Artificial Intelligence April 02, 2025 Expectation and Variance in the General Setting

Instructor: Vishnu Boddeti

Scribes: Jiaming Zhang, Yuyuan Tian

1 Expectation and Variance

Definition 1.1 (L^p -space) Let (Ω, \mathcal{A}, P) be a probability space. For $1 \leq p < \infty$ we define

$$L^p(\Omega, \mathcal{A}, P) := \{ X : \Omega \to \mathbb{R} \mid X \text{ measurable and } \int_{\Omega} |X|^p \, dP < \infty \}.$$

For $p = \infty$ we write L^{∞} for the space of essentially bounded random variables.

Definition 1.2 (Expectation & Moments) If $X \in L^1(\Omega, \mathcal{A}, P)$, its expectation (or first moment) is

$$\mathbb{E}[X] := \int_{\Omega} X \, dP = \int_{\mathbb{R}} x \, dP_X(x).$$

More generally, if $k \in \mathbb{N}$ and $X^k \in L^1$, the k-th moment is

$$\mathbb{E}[X^k] = \int_{\Omega} X^k \, dP$$

Definition 1.3 (Variance & Covariance) For $X, Y \in L^2(\Omega, \mathcal{A}, P)$ the variance and covariance are defined by

$$\operatorname{Var}(X) := \mathbb{E}[(X - \mathbb{E}[X])^2], \qquad \operatorname{Cov}(X, Y) := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])].$$

2 Markov and Chebyshev Inequalities

2.1 Cauchy–Schwarz Inequality

Theorem 2.1 (Cauchy–Schwarz Inequality) Let $x, y \in L^2(\Omega, \mathcal{A}, P)$. Then,

$$\left|\mathbb{E}[x\,y]\right|^2 \leq \mathbb{E}\left[x^2\right]\mathbb{E}\left[y^2\right].$$

2.2 Markov Inequality

Theorem 2.2 (Markov Inequality) Let $g : [0, \infty) \to [0, \infty)$ be a non-decreasing measurable function and let X be a non-negative r.v. Then for every a > 0

$$P\{X \ge a\} \le \frac{\mathbb{E}[g(X)]}{g(a)}.$$

In particular, with g(x) = x we obtain $P\{X \ge a\} \le \frac{\mathbb{E}[X]}{a}$.

2.3 Chebyshev Inequality

Theorem 2.3 (Chebyshev) For any $X \in L^2$ and $\varepsilon > 0$

$$P\{|X - \mathbb{E}[X]| \ge \varepsilon\} \le \frac{\operatorname{Var}(X)}{\varepsilon^2}$$

Chebyshev's inequality provides a distribution-free upper bound on the probability of large deviations. It is a key tool in proving the Weak Law of Large Numbers.

3 Probability Distributions

3.1 Discrete Distributions

Definition 3.1 (Uniform Distributions on $\{1, ..., n\}$) *A discrete r.v. X is* uniform on $\{1, ..., n\}$ if $P\{X = i\} = \frac{1}{n}$ for each *i*.

Definition 3.2 (Binomial Distributions Bin(n,p)) Let $n \in \mathbb{N}$ and $p \in (0,1)$. If X counts the number of heads in n independent Bernoulli(p) trials then

$$P\{X=k\} = \binom{n}{k} p^k (1-p)^{n-k}, \qquad k = 0, \dots, n.$$

Definition 3.3 (Poisson Distributions $Pois(\lambda)$) For $\lambda > 0$, a r.v. X is Poisson with rate λ if

Parameter
$$\lambda > 0$$

$$P\{X=k\} = e^{-\lambda} \frac{\lambda^k}{k!}, \qquad k \in \mathbb{N}_0.$$

It often models the number of arrivals in a fixed time interval.

3.2 Continuous Distributions

Definition 3.4 (Uniform on [a, b)]

A continuous r.v. X is uniform on [a, b] if its density is

$$f_X(x) = \begin{cases} (b-a)^{-1}, & x \in [a,b], \\ 0, & otherwise. \end{cases}$$

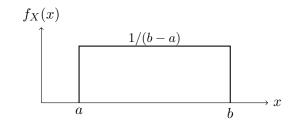


Figure 1: Density of a continuous uniform distribution on [a, b].

Definition 3.5 (Normal $\mathcal{N}(\mu, \sigma^2)$) A r.v. X is normal with mean μ and variance $\sigma^2 > 0$ if its density is

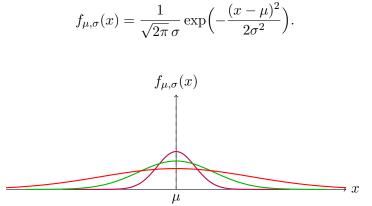


Figure 2: Normal densities with identical mean μ and different variances ($\sigma_{\text{orange}} < \sigma_{\text{green}} < \sigma_{\text{red}}$).

4 Multivariate Normal Distribution

Let $X = (X_1, \ldots, X_n)^\top \in \mathbb{R}^n$ with mean vector μ and covariance matrix Σ . We write $X \sim \mathcal{N}(\mu, \Sigma)$ if

$$f_{\mu,\Sigma}(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} \exp\left(-\frac{1}{2}(x-\mu)^\top \Sigma^{-1}(x-\mu)\right).$$

Key facts.

- Σ is symmetric positive semi-definite and thus possesses an eigen-decomposition $\Sigma = Q\Lambda Q^{\top}$.
- The contour ellipsoids of $f_{\mu,\Sigma}$ are aligned with the eigenvectors of Σ .
- Independence of components X_i is equivalent to Σ being diagonal.
- If $X \sim \mathcal{N}(\mu_1, \Sigma_1)$ and $Y \sim \mathcal{N}(\mu_2, \Sigma_2)$ are independent, then $X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \Sigma_1 + \Sigma_2)$.

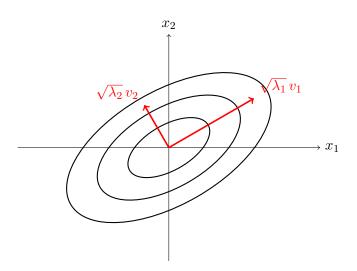


Figure 3: Contours of a bivariate normal distribution with mean (0, 0). Ellipses represent constant Mahalanobis distance. Red arrows indicate eigenvectors v_1, v_2 of Σ scaled by $\sqrt{\lambda_1}$ and $\sqrt{\lambda_2}$.

5 Mixture of Gaussians

Definition 5.1 (Gaussian Mixture Model) Let $\{\pi_i\}_{i=1}^k$ be non-negative weights satisfying $\sum_{i=1}^k \pi_i = 1$, and let f_{μ_i, Σ_i} denote Gaussian densities. The Gaussian mixture density is

$$f(x) = \sum_{i=1}^{k} \pi_i f_{\mu_i, \Sigma_i}(x).$$

GMMs combine multiple Gaussian "clusters" and can approximate arbitrary continuous densities. The Expectation–Maximisation (EM) algorithm is the canonical method for parameter estimation.

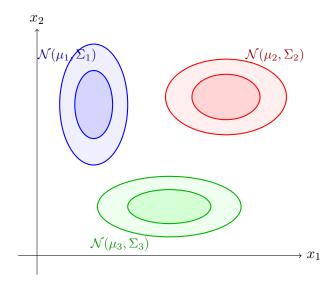


Figure 4: Contour plot of a 3-component Gaussian mixture in \mathbb{R}^2 . Shaded ellipses depict 1σ and 2σ level sets for each component.

6 Additional Results

6.1 Weak Law of Large Numbers

Theorem 6.1 (WLLN) Let X_1, X_2, \ldots be *i.i.d.* with $\mathbb{E}[X_i] = \mu$ and $\operatorname{Var}(X_i) = \sigma^2 < \infty$. Then for any $\varepsilon > 0$

$$\Pr\left\{\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right|>\varepsilon\right\} \longrightarrow 0 \quad (n\to\infty).$$

6.2 Central Limit Theorem

Theorem 6.2 (CLT) Under the same assumptions as the WLLN,

$$\frac{\sqrt{n}}{\sigma} \Big(\frac{1}{n} \sum_{i=1}^{n} X_i - \mu \Big) \xrightarrow{d} \mathcal{N}(0,1).$$