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Lebesgue Decomposition and Probability Theory
Instructor: Vishnu Boddeti Scribes: Preston Korytkowski, Shashank Jayaram

1 Lebesgue Decomposition

1.1 Definitions

Definition 1 A measure µ is called absolutely continuous with respect to λ if λ(A) = 0 ⇒
µ(A) = 0 for all A ∈ B(R).

Definition 2 A measure µ is called singular (w.r.t. λ) if there exists N ∈ B(R) with λ(N) = 0
and µ(N∁) = 0 (µ ⊥ λ).

Example: Dirac measure δ0, where δ0({0}) = 1 and δ0(R \ {0}) = 0, is singular with respect to
λ.

1.2 Theorem (Lebesgue Decomposition)

Theorem 3 Let µ, ρ be a probability measure on (R,B). Then there exists a unique decomposition

ρ = ρa + ρs

such that ρa is absolutely continuous w.r.t. µ, and ρs is singular w.r.t. µ.

Example: ρ = 1
2 (N (0, 1), δ0) decomposes into absolutely continuous part 1

2N (0, 1) and singular
part 1

2δ0.

1.3 Cantor Distribution

The Cantor distribution is a non-trivial distribution that is singular w.r.t. λ.

Construct the Cantor set:

• Start with C0 = [0, 1]

• Remove the middle third: C1 = [0, 1
3 ] ∪ [ 23 , 1]

• Repeat: C2 = [0, 1
9 ] ∪ [ 29 ,

1
3 ] ∪ [ 23 ,

7
9 ] ∪ [ 89 , 1]

18-1



• The Cantor set C =
⋂∞

n=1 Cn

The Cantor function can be used to define a probability distribution that is singular w.r.t. λ.

0 1 uniform on [0, 1]

0 1
3

2
3 1 uniform on [0, 1

3 ] ∪ [ 23 , 1]

0 1

Figure 1: CDFs of the uniform distributions on C0, C1, C2, . . . . Taking the limit yields a distribution
supported on the Cantor set.

Proposition 4 The Cantor set has the following properties:

• It is compact.

• It is non-empty and has no interior points.

• Every point is a boundary point.

Proposition 5 The associated Cantor function has the following properties:

• It is continuous.

• It defines a valid probability measure.

• Its absolutely continuous component is zero.
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2 Cumulative Distribution Function (CDF)

Definition 6 Let P be a probability measure on (R,B(R)). The function:

F (x) = P ((−∞, x])

is called a cumulative distribution function (CDF) that satisfies the following properties:

(i) F is monotonically increasing; limx→−∞ F (x) = 0, and limx→∞ F (x) = 1.

(ii) F is right-continuous: If xn ↓ x, then F (xn) → F (x).

x

F (x)

F

−∞ +∞

x

F (x)

x

f(x)

x0

PDF of a normal distribution; shaded region = P (X ≤ x0)

x

F (x)

x0

CDF

“Volume”

Figure 2: Top: Typical CDFs — smooth (continuous) and stepwise (discrete). Middle: PDF of
a continuous distribution and the shaded probability up to x0. Bottom: The corresponding CDF
value is the accumulated area under the PDF.
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2.1 Existence and Uniqueness

Theorem 7 Let F : R → R be a function satisfying properties (i) and (ii) above. Then there exists
a unique probability measure P on (R,B(R)) such that

P ((−∞, x]) = F (x)

Remark 8 This relationship works both ways — given a PDF, we can construct the CDF, and
given a valid CDF, we can construct a unique corresponding PDF.

3 Random Variables

Definition 9 Let (Ω,A, P ) be a probability space and ( Ω̃ , Ã ) a measurable space. A mapping
X : Ω → Ω̃ is called a random variable if X is measurable, i.e., for all Ã ∈ Ã :

X−1( Ã) := {ω ∈ Ω|X(ω) ∈ Ã} ∈ A

Ω

people in the world

Ω̃

height

A ÃX

A = “people that are at least 6ft”
P (A) = 0.1 Ã = “at least 6ft”

Figure 3: A random variable X : Ω → Ω̃ maps people to their heights. Sets like A in Ω and Ã in Ω̃
are linked through X−1(Ã) = A.

Example: Sum of two dice:

• Sample space: Ω = {(i, j) | 1 ≤ i, j ≤ 6}

• Event A: sum = 3 ⇒ A = {(1, 2), (2, 1)}

• P (A) = 2
36 = 1

18

• Define random variable X(ω) = i+ j for ω = (i, j)

3.1 Combining Random Variables

Theorem 10 Suppose Xi, i = 1, 2, . . . are all measurable random variables. Then the following
are also measurable random variables:
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1. X1 +X2 +X3 + · · ·+Xn

2. X2
1

3. cX1 for any c ∈ R

4. X1X2

5. inf{Xn ; n ≥ 1}

6. lim infn→∞ Xn

7. sup{Xn ; n ≥ 1}

8. lim supn→∞ Xn

3.2 Induced Measure / Distribution of a Random Variable

Definition 11 Given X : Ω → Ω̃, for Ã ∈ Ã, the distribution of X is defined as:

PX(Ã) = P (X−1(Ã))

This defines a probability measure on (Ω̃, Ã).

3.3 Sigma-algebra Induced by a Random Variable

Definition 12 Let X : (Ω,A, P ) → (Ω̃, Ã). The σ-algebra induced by X is defined as:

σ(X) := {X−1(Ã) | Ã ∈ Ã}

This is the smallest σ-algebra that makes X measurable.

4 Conditional Probability

Basic probability operations:

• P (A ∩B): probability of A and B

• P (A ∪B): probability of A or B

Definition 13 Let (Ω,A, P ) be a probability space and A,B ∈ A with P (B) > 0. The
conditional probability of A given B is defined as:

P (A | B) =
P (A ∩B)

P (B)

Theorem 14 The mapping PB : A → [0, 1] defined by PB(A) = P (A | B) is a probability measure
on (Ω,A). It is called the conditional distribution of P with respect to B.
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P (A ∩B) = P (“A and B”)

Ω

A B

P (A ∪B) = P (“A or B”)

Ω

A B

Figure 4: Venn diagrams illustrating P (A ∩B) (overlap only) and P (A ∪B) (union of both).

4.1 Examples

Example: Example with two dice:

P (Sum is 7 | First die is 2) =
P (Sum is 7 and first die is 2)

P (First die is 2)

Example: Let Ω be all people on Earth.

• A: person has a disease

• B: person is vaccinated
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Ω: All people
B: Vaccinated A: Disease

Vaccinated ∩ Diseased

Figure 5: Conditional probability illustrated: P (Disease | Vaccinated) = P (A∩B)
P (B)

Then the conditional probability:

P (Disease | Vaccinated) =
P (Vaccinated and Disease)

P (Vaccinated)

4.2 Application: Naive Bayes Classifier (NBC)

The Naive Bayes Classifier is a probabilistic model commonly used in machine learning for
classification tasks. It is based on applying Bayes’ Rule with the naive assumption that features
are conditionally independent given the class.

Definition 15 (Bayes’ Rule) For events A and B with P (B) > 0,

P (A|B) =
P (B|A)P (A)

P (B)

Example Task: Given the data below, predict the ailment of a sneezing builder:

SYMPTOM OCCUPATION AILMENT
sneezing nurse flu
sneezing farmer hayfever
headache builder concussion
headache builder flu
sneezing teacher flu
headache teacher concussion
sneezing builder ???

Goal: Predict P (flu | sneezing, builder)

Step 1: Use Bayes’ Rule

P (flu | sneezing, builder) =
P (flu) · P (sneezing | flu) · P (builder | flu)

P (sneezing,builder)
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Step 2: Estimate Probabilities from Data

• P (flu) = 0.5

• P (sneezing | flu) = 0.66

• P (builder | flu) = 0.33

• P (sneezing,builder | flu) = 0.66 · 0.33 = 0.22

• P (sneezing) = 0.5

• P (builder) = 0.33

• P (sneezing,builder) = 0.5 · 0.33 = 0.165

Step 3: Compute Final Probability

P (flu | sneezing, builder) =
0.5 · 0.22
0.165

=
0.11

0.165
≈ 0.66

So, the sneezing builder has flu with probability 0.66.

Key Assumption

The Naive Bayes Classifier assumes:

P (symptom, occupation | ailment) = P (symptom | ailment) · P (occupation | ailment)

This assumption of conditional independence rarely holds in practice, but the NBC often performs
surprisingly well regardless.
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