
CSE 840: Computational Foundations of Artificial Intelligence 09 13, 2023

Diagonalization, Triangular Matrices, Metric Spaces, Normed Spaces;p-norms
Instructor: Vishnu Boddeti Scribe: Nicole Schneider - Mahdi Masmoudi

1 Diagonalization

Definition 1 An operator T ∈ L(v) is diagonalizable if there exists a basis of V such that the
corresponding matrix is diagonal:

M(T ) =

 λ1 0
. . .

0 λn


Nice property: Diagonal form is the best since we have the eigenvectors as the basis.

Proposition 2 Let V be a finite-dimension vector space. A ∈ L(v). Then the following statements
are equivalent:

(P1) A is diagonalizable

(P2) The characteristic polynomial PA can be decomposed into linear factors AND The algebraic
multiplicity of the roots of PA are equal to the geometric multiplicity

(P3) If λ1, . . . λk are the pairwise distinct eigenvalues of A, then

V = E (A, λ1)⊕ E (A, λ2) . . .⊕ E (A, λk)

2 Triangular Matrices

Definition 3 A matrix is called upper triangular if it has the form

M(T ) =

 λ1 ∗
. . .

0 λn


Proposition 4 T ∈ L(v),Φ = {v1, v2 . . . vn} a basis, then following are equivalent:

(P1) M(T,D) is upper triangular

(P2)Tvj ∈ span {v1, v2 . . . vj} ∀j = 1, 2, . . . n
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Tv1 =

 λ1 a12 a13
0 λ2 a23
0 0 λ3

 1
0
0

 =

 λ1

0
0

 = λ1 · v1

Tv2 =

 λ1 a12 a13
0 λ2 a23
0 0 λ3

 0
1
0

 =

 a12
λ2

0

 = a12

 1
0
0

+ λ

 0
1
0

 ∈

∈ span (v1, v2)

Proposition 5 V complex, finite-dim VS, T ∈ L(V ). Then M(T ) has an upper triangular form for
some basis.

→ If we are in the complex field, every matrix com be expressed as an upper triangular matrix.

Proposition 6 Suppose T ∈ L(v), V any finite-dim VS, has an upper triangular form. Then the
entries on the diagonal are precisely the eigenvalues of T .

3 Metric Space

Metric
spaces →

Normed
spaces →

inner
product
spaces

→
Hilbert
spaces

K-N N → Metric

Definition 7 Let x be a set. A function d : x× x → R is called a metric if the following conditions
hold. ∀u, v, w ∈ X :

(P1) d(u, v) > 0 if u ̸= v and d(u, u) = 0

(P2) d(u, v) = d(v, u) (symmetry)

(P3) d(u, v) ⩽ d(u,w) + d(w, v)

Example: assymetric measures

(i) friendship graph

(ii) KL(p∥q) ̸= KL(q∥p)
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Notation: Sequence: (x1, x2 . . .) → (xn)n∈N

Definition 8 Sequence: (x1, x2 . . .) → (xn)n∈N
A sequence (xn)n∈N in a metric space (x, d) is called a Cauchy Sequence
if ∀ε > 0∃N ∈ N,∀n,m > N, d (xn, xm) < ε

Definition 9 A sequence (xn)n∈N converges to x ∈ X if ∀ε > 0 ∃N ∈ N ∀n > N, d (xn, x) < ε

Notation: xn → x, limn→∞ xn = x

sequence (xn)n∈N = 1/n on x = (0, 1)

Here (xn)n∈N is a Cauchy seq. But does not converge.

Sequence (xn)n∈N = 1/n on x̃ = [0, 1]. Here (xn)n∈N is a cauchy sequence that converses on x̃ to 0
.

Definition 10 A metric space is called complete if every Cauchy sequence converges.
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Notation: Bϵ(u) := {x ∈ X | d(x, u) ⩽ ε} → ε - ball

Definition 11 A set A ⊆ x is called closed if all Cauchy sequences converge and have their limit
point of A.

Definition 12 A set A ⊆ x is called open if:

∀a ∈ A ∃ε > 0 : Bϵ(a) ⊂ A

• Set [0, 1] is closed.

• Set (0, 1) is open.

• A set A can be neither open nor closed. e.g. [0, 1).
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Definition 13 A point a ∈ A is an interior point of A if ∃ε > 0, s.t. Bϵ(a) ⊂ A.

• e.g. A = [0, 1], then x ∈ (0, 1) are interior points.

Definition 14 The (topological) closure of a set A is defined as the set of points that can be ap-
proximated by Cauchy sequences in A :

ω ∈ Ā ⇔ ∀ε > 0∃z ∈ A : d(ω, z) < ε

Notation: Ā is the closure of A. A ∪ dA (always closed!)

Definition 15 The (topological) interior of a set A is defined as the set of interior points of A.

Notation: A0

Definition 16 The (topological) boundary of a set A is defined as the set Ā\A◦.

x = [0, 1) sometimes
x̄ = [0, 1] ∂x = x\x0

x0 = (0, 1) = {0}

=> boundary∂x = x̄\x0 = {0, 1}

Definition 17 A set A is dense in X if we can approximate every x ∈ X by a sequence in A.
Formally, ∀x ∈ X ∀ ∈> 0, Bϵ(x) ∩A ̸= ∅.

Example: Q ⊂ R is dense

Definition 18 A set A ⊂ X is bounded if there exists D > 0 such that ∀u, v ∈ A d(u, v) < D.

4 Norms

Definition 19 Let V be a vector space. A norm on V is a function ∥ · ∥ : V → R such that
∀x, y ∈ V, λ ∈ F , the following conditions hold:

(P1) ∥λx∥ = |λ|∥x∥ (homogeneous)

(P2) ∥x+ y∥ ⩽ ∥x∥+ ∥y∥ (triangle inequality)

(P3)x = 0 ⇒ ∥x∥ = 0

(P4) ∥x∥ = 0 ⇒ x = 0

∥ · ∥ is a semi-norm if (P1)− (P3) are satisfied.
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Intuition: norm(x) = "length of x”

= distance(x, 0)

Examples:

• Euclidean norm on Rd : ∥x∥ =
(∑d

i=1 x
2
i

)1/2
• Manhattan distance: ∥x∥ =

(∑d
i=1 |xi|

)

5 p-Norm

Consider V = Rd. Define ∥ · ∥P : Rd → R

∥x∥p :=

(
d∑

i=1

|xi|p
)1/p

for 0 < p < ∞

• ∥ · ∥p is a norm if p ⩾ 1

• Unit balls: the unit ball of a norm is the set of points such that norm ⩽ 1 :

Bp :=
{
x ∈ R2 | ∥x∥p ⩽ 1

}
Examples: R2
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Definition 20 ∥x∥∞ := max |xi| (is a norm)
∥x∥0 := number of non-zero coordinates =

∑d
i=1 ⊮ {xi ̸= 0} ∥x∥0 is not a norm

x =

[
1
0

]
, ∥x∥0 = 1;λx =

[
5
0

]
, ∥λx∥0 = 1

λ = 5 ̸= 5.1
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