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1 Product Space, Joint Distribution

Definition 1 Consider two measureable spaces (Ω1,A1), (Ω2,A2). The Product Space of these
spaces is (Ω1 × Ω2,A1 ⊗ A2). Where:

Ω1 × Ω2 = {(ω1, ω2)|ω1 ∈ Ω1, ω2 ∈ Ω2}

A1 ⊗ A2 = {A1 ×A2|A1 ∈ A1, A2 ∈ A2}

Consider two random variables:
X1 : (Ω,A ,P) → (Ω1,A1)

X2 : (Ω,A ,P) → (Ω2,A2)

Then,
X := (X1, X2) : (Ω,A ,P) → (Ω1 × Ω2,A1 ⊗ A2)

(X1, X2)(ω) = (X1(ω), X2(ω))

Definition 2 For a product space (Ω1 × Ω2,A1 ⊗ A2) with random variables X1 and X2, the dis-
tribution P(X1,X2) over that space is called the Joint Distribution of X1 and X2

Example from Machine Learning: (X,Y ) where X is the input data and Y is the label.

Definition 3 Let (Ω1,A1, P1) and (Ω2,A2, P2) be two probability spaces. The Product Measure
P1 ⊗ P2 on the product space (Ω1 × Ω2,A1 ⊗ A2) is

(P1 ⊗ P2)(A1 ×A2) := P1(A1) · P2(A2)

Theorem 4 Two random variables X1 and X2 are independent if and only if their joint distribution
coincides with the product distributions:

P(X1, X2) = P1 ⊗ P2

2 Marginal Distributions

Definition 5 Consider the joint distribution P(X1, X2) for two random variables X := (X1, X2).
The Marginal Distribution of X with respect to X1 is the original distribution of X1 on (Ω1,A1),
namely PX1

. Similarly for X2 as well.
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Figure 1: Example of discrete marginal distribution

2.1 Marginal Distributions in the Case of Densities

X,Y : (Ω,A , P ) → (R,B(R)). z := (X,Y ). Assume that the joint distribution of z has a density
of f on R2. Then we have the following statements:

1. Both X and Y have densities on (R,B(R)) given by,

fX(x) =

∫ ∞

−∞
f(x, y) dy

fY (Y ) =

∫ ∞

−∞
f(x, y) dx

2. X and Y are independent if and only if

f(x, y)− fX(x) · fY (y)a.s.

2.2 Mixed Cases

There are also join distributions where the random variables are of different types. For example,
consider X is a continuous random variable with density (e.g. an image (2d-continuous signal)) and
Y is a discrete random variable (e.g. a classification "cat" "dog". . . )

2.3 Special Case: Marginals of multivariate Normal

2.3.1 Two Dimensions

Consider a 2-dimensional normal random variable X =
(
X1

X2

)
with mean µ =

( µ1
µ2

)
∈ R2 and

covariance Σ =
(

σ2
1 σ1,2

σ2,1 σ2
2

)
Then the marginal distribution of X with respect to X1 is also a normal

distribution with mean µ1 and variance σ2
1
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Figure 2: Illustration of marginal distribution of X for multivariate Normal

2.3.2 n Dimensions

X =

X1

...
Xn

 ∈ Rn

Group the variables into,

S =

X1

...
Xk

 ∈ Rk, T =

Xk+1

...
Xn

 ∈ Rn−k

We want to look at the marginal of X with respect to S. Let the mean vector be,

µ =

µ1

...
µn


Then,

µS :=

µ1

...
µk

 , µT :=

µk+1

...
µn


We divide the covariance matrix Σ as follows:

Σ =

(
ΣS,S ΣS,T

ΣT,S ΣT,T

)
∈ Rn×n

Now the marginal of X with respect to S is a normal distribution on Rk with mean µS and covariance
σSS

3 Conditional Distribution

3.1 Discrete Case

Known conditional probabilities: P (A|B) defined for events A,B ∈ A , and P (B) > 0. Let X,Y :
(Ω,A , P ) → R be discrete random variables, y ∈ R such that P (Y = y) > 0. Then we can define
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the conditional probability measure:

PX|Y=y : A 7→ P (X ∈ A|Y = y)

This is a probability measure.

3.2 General Random Variables

It is very complicated and we will not cover it in this course.

3.3 Conditional distributions in the Case of Densities

Assume Z := (X,Y ) has a joint density f : R2 → R, and marginal densities fX , fY : R → R. Then
the function,

fX|Y=y(x) :=
f(x, y)

fY (y)

is also a density on R, called the conditional density of X given Y = y.

Example: Normal Distribution Let,

µ =

µ1

...
µn

 ,Σ =

(
ΣS,S ΣS,T

ΣT,S ΣT,T

)

If X =

(
x1

...xn

)
∼ N (µ,Σ), then the conditional distributions of XS =

(
x1

...xk

)
conditioned on

XT =

( xk+1

...xn

)
is given by:

PXS |XT
∼ N (µT +ΣS.TΣ

−1
T,T (XS − µT ),ΣT,T − ΣT

S,TΣ
−1
S,SΣS,T )

Figure 3: Visualization of conditional distributions on multivariate normal
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4 Conditional Expectation

Definition 6 Conditional Expectation in the Discrete Case Let X,Y : (Ω,A , P ) → R. Assume X
takes finitely (countably) many values x1, x2, . . . , xn ∈ R and Y takes finitely (countably) many
values y1, y2, . . . , yminR. Always with positive probability. Then,

E (Y |X = xi) :=

m∑
j=1

yjP (Y = yj |X = xi)

Example: two dice, X = value of die 1, Y = value of die 2, independent dice.

E (sum|X = 1) =

12∑
i=1

i · P (sum = i|X = 1)

=

6∑
k=1

(1 + k)× P (Y = k|x = 1)

=

6∑
k=1

(1 + k)× P (Y = k) =

6∑
k=1

(1 + k) · 1
6
= 4.5

So far we defined E (Y |X = xi), but often we want to consider the "function" E (Y |X) (ω). This is
a random variable: E (Y |X) : (Ω,A , P ) → (R,B(R)). This leads to the following:

Definition 7 Discrete Case X,Y as before. Then the conditional expectation is defined as follows:

E (Y |X) := f(x)

f(x) =

{
E (Y |X = x) ifP (X = x) > 0

arbitrary, say 0 otherwise

Caution: E (Y |X) is only defined almost surely

Now we want to consider the more general case. Sketch: X is a continuous random variable and
Y is a discrete random variable ∼ y1, y2, . . . , y5. We want to look at E (X|Y ). Figure 4 gives a
visualization.

Figure 4:
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We want to "define E (X|Y ) :=
∑5

i=1 E (X|Y = yi) · 1Bi
(ω), but we need to make sure that it is

measurable with respect to σ(Y ) (the "bins")

Definition 8 Consider random variables x : (Ω,A0, P ) → R and X ∈ L1(Ω,A0, P ). Let A be a
sub-σ-algebra of A0. (intuition: A will be the σ-algebra generated by the variable Y we want to
condition on). The condition expectation of X given A , E (X|A ) is any random variable Z that
satisfies:

1. Z is measurable with respect to A

2. For all A ∈ A we have: ∫
A

X dP =

∫
A

Z dP

• The existence of E (X|A ) is not clear a priori; it needs to be proven.

• E (X|Y ) := E (X|σ(Y ))

Examples (Extreme Cases):

• X = Y , then E (X|Y ) = E (X) (a.s)

• X ⊥⊥ Y , then E (X|Y ) = E (X) (a.s)

4.1 The Case of Join Densities

Let X,Z : (Ω,A , P ) → (R,B(R)) have a joint density f(x, z). Let g : R → R be a bounded
function, and Y := g(Z). Assume we want to compute E (Y |X) = E (g(Z)|X).

Recall X has density fX(x) =
∫
f(x, z) dz. The conditional density of Z given X = x is

fX=x(z) =
f(x, z)

fX(x)
(iffX(x) ̸= 0)

Now consider,

h(x) :=

∫
g(z)fX=x(z) dz

and define E (Y |X) = h(x)
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