CSE 840: Computational Foundations of Artificial Intelligence November 29, 2023

Product Space and Joint, Marginal, and Conditional Distribution and Expectation
Instructor: Vishnu Boddeti Scribe: Richard Frost

1 Product Space, Joint Distribution

Definition 1 Consider two measureable spaces (Q1,9%), (Q2,94). The Product Space of these
spaces is (1 X Qo, A ® o). Where:

Ql X QQ = {(wl,WZ)‘Wl S Ql,wz S QQ}

o @ by = {A1 X Ag|Ay € dh, Ay € o}

Consider two random variables:
Xl : (97%7]?) — (Qladl)

Xo: (Q,4,P) — (g, o)

Then,
X = (Xl,XQ) : (Q,DQ{,]P) — (Ql X QQ7JZ{1 ®%)

(X1, Xa)(w) = (X1(w), Xa(w))

Definition 2 For a product space (21 X Qg, & ® o) with random variables X1 and Xs, the dis-
tribution P(x, x,) over that space is called the Joint Distribution of X1 and Xo

Example from Machine Learning: (X,Y’) where X is the input data and Y is the label.

Definition 3 Let (1,94, P1) and (Qa, 9%, Py) be two probability spaces. The Product Measure
Py ® Py on the product space (Q1 X Qo, & ® o) is

(P ® Py) (o1 x Ag) := P1(Ar) - Pa(As)

Theorem 4 Two random variables X1 and Xo are independent if and only if their joint distribution
coincides with the product distributions:

PX1,X2)=P1®P,

2 Marginal Distributions

Definition 5 Consider the joint distribution P X1, X3) for two random variables X := (X1, X2).
The Marginal Distribution of X with respect to Xy is the original distribution of X1 on (Q1,.94),
namely Px,. Similarly for Xs as well.
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Figure 1: Example of discrete marginal distribution

2.1 Marginal Distributions in the Case of Densities

XY : (Q,4,P)— (R,ZR)). z:=(X,Y). Assume that the joint distribution of z has a density
of f on R?. Then we have the following statements:

1. Both X and Y have densities on (R, Z(R)) given by,

i@ = [ " ) dy

o0
)= [ fawds
—00
2. X and Y are independent if and only if
flz,y) — fx () - fy (y)a.s.

2.2 Mixed Cases

There are also join distributions where the random variables are of different types. For example,
consider X is a continuous random variable with density (e.g. an image (2d-continuous signal)) and
Y is a discrete random variable (e.g. a classification "cat" "dog"...)

2.3 Special Case: Marginals of multivariate Normal

2.3.1 Two Dimensions

Consider a 2-dimensional normal random variable X = (f{é) with mean p = (4ii) € R? and
2

covariance X = (;1 U;f) Then the marginal distribution of X with respect to X is also a normal
2,1 03

distribution with mean p; and variance o?
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Figure 2: Illustration of marginal distribution of X for multivariate Normal

2.3.2 n Dimensions

Xq
X=|:]eR"
Xn
Group the variables into,
X1 Xkt1
S=|:|erFfT=| : |[er**
Xk Xn

We want to look at the marginal of X with respect to S. Let the mean vector be,

M1
w=|
Hn
Then,
H1 HE+1
ps = |pr=1|
[k fin
We divide the covariance matrix ¥ as follows:
by b
o= (5] m ) ew

Now the marginal of X with respect to S is a normal distribution on R*¥ with mean g and covariance
0ss

3 Conditional Distribution

3.1 Discrete Case

Known conditional probabilities: P(A|B) defined for events A, B € <7, and P(B) > 0. Let X,Y :
(Q, 47, P) — R be discrete random variables, y € R such that P(Y = y) > 0. Then we can define
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the conditional probability measure:
Px|yZyA'—>P(X€A|Y:y)

This is a probability measure.

3.2 General Random Variables

It is very complicated and we will not cover it in this course.

3.3 Conditional distributions in the Case of Densities

Assume Z := (X,Y) has a joint density f : R? — R, and marginal densities fx, fy : R — R. Then
the function,
f(z,y)

Pxv=(®) =0

is also a density on R, called the conditional density of X given Y = y.

Example: Normal Distribution Let,

M1

. Yss XsrT
= . s E = ’ ’
a : (ET,S Xrr

[in

T xr1
If X = ( > ~ A (u,X), then the conditional distributions of Xg = <: ) conditioned on

Tn ‘Tp

Tr+1
Xr= ( : ) is given by:

Ty

Pxgix, ~ N (pr + ES.TE%}T(XS —pur), X — EE,TEE}SES,T)

—'\, X

m.ﬂ'fs v o—g
(Co“aPS?ﬂﬁ )

Laﬂo[i'f?rnol
(sficing )

Figure 3: Visualization of conditional distributions on multivariate normal
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4 Conditional Expectation

Definition 6 Conditional Expectation in the Discrete Case Let X, Y : (2,4, P) — R. Assume X
takes finitely (countably) many values x1,xa,...,z, € R and Y takes finitely (countably) many
values y1,ya, . .., yminR. Always with positive probability. Then,

EY|X =ux): Zy] Y =y;|X =)

Example: two dice, X = value of die 1, Y = value of die 2, independent dice.
12
E(sum|X =1) = i P(sum = i|X = 1)
i=1

6
(1+k) x P(Y = klz =1)

X
—_

=Y (A+k)xP(Y=k)=> (1+k)- é 4.5

So far we defined E (Y| X = z;), but often we want to consider the "function" E (Y| X) (w). This is
a random variable: E(Y|X) : (Q, o, P) — (R, Z(R)). This leads to the following:

Definition 7 Discrete Case X,Y as before. Then the conditional expectation is defined as follows:
E(Y|X):= f(z)
EY|X ==z ifP(X=12)>0
Fa) = { (Y|X =2) (X =)

arbitrary, say 0 otherwise

Caution: E(Y|X) is only defined almost surely

Now we want to consider the more general case. Sketch: X is a continuous random variable and
Y is a discrete random variable ~ y1,ys,...,y5. We want to look at E(X|Y). Figure |4] gives a

visualization.

X

A : : !
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Figure 4:
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We want to "define E (X|Y) := Z;r.’:l]E(X|Y =1y;) - 1p,(w), but we need to make sure that it is
measurable with respect to o(Y) (the "bins")

Definition 8 Consider random variables x : (2, 2%, P) — R and X € L1(Q, o4, P). Let o be a
sub-o-algebra of . (intwition: < will be the o-algebra generated by the variable Y we want to
condition on). The condition expectation of X given <7, E(X|</) is any random wvariable Z that
satisfies:

1. Z is measurable with respect to </

2. For all A € &/ we have:

/XdP:/ZdP
A A

o The existence of E (X|e/) is not clear a priori; it needs to be proven.

e E(X|Y):=E(X]|o(Y))
Examples (Extreme Cases):

e X =Y then E (X|Y) =E (X) (a.s)
e X LY, then E(X|Y)=E(X) (a.s)

4.1 The Case of Join Densities

Let X,Z : (Q,4,P) — (R,2(R)) have a joint density f(x,z). Let g : R — R be a bounded
function, and Y := ¢g(Z). Assume we want to compute E (Y|X) = E (¢(2)|X).

Recall X has density fx(z) = [ f(z,z)dz. The conditional density of Z given X =z is

flz,2
Ix(x)

~—

fx=a(z) =

(iffx (z) # 0)

Now consider,
h(z) := /g(z)fX:w(z) dz
and define E (Y|X) = h(z)
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