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1 Probability Measure

Definition 1

• Given space Ω ("abstract space")

• Need a r-algebra AR on Omega. ("measurable events")

• A ∈ Ar =⇒ AC ∈ Ar

• (Ai)i∈N ⊂ Ar =⇒
∞⋃
i=1

Ai ∈ Ar ("countable unions")

• ∅,Ω ∈ Ar

• countable intersections

• A measure µ on (Ω, Ar) is a function µ : Ar → [0,∞] that is countably additive: If (Ai)i∈N is a

sequence of pairwise disjoint sets, then µ(
∞⋃
i=1

Ai) =
∞∑
i=1

µ(Ai)

A measure P on a measurable space (Ω, Ar) is called a probability measure if P (Ω) = 1. The elements
of Ar are called events. Then (Ω, Ar, P ) is called a probability space.

Example (1):

Throw a die

Ω = 1, 2, ..., 6, Ar = P (Ω) (r-algebra generated by the "elementary events" {1}, {2}...{6}).

P can be defined uniquely by assigning P ({1}) = P ({2}) = ..... = P ({6}) = 1
6

For example P ({1, 5}) = P ({1}) + P ({5}) = 1
3

Throw two dice:

Ω = {1, 2, ..., 6} × {1, 2, ...6} = { (1, 1)
first die,second die

, (1, 2)....} all of which are elementary events

Ar = P (Ω)

P ({(i, j)}) = 1
36

Example (2): Normal distribution

Ω = R

Ar = Borel-r-algebra

fµ,r : R =⇒ R
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Figure 1: µ

Figure 2: A

x ↣ 1√
2πr2

exp (−(x−µ)2

2r2 )

P : Ar → [0, 1], P (A) :=
∫
A
fµ,r(x)dx

X-2



Figure 3: Dirac measure

2 Different Types of Probability Measures

Definition 1 Discrete measure:

Ω = {x1, x2, ...} finite and countable

Ar = P (Ω)

We define a probability measure P : Ar → [0, 1] by assigning probabilities to the "elementary
events":

P ({xi}) =: Pi

with 0 ≤ Pi ≤ 1,ΣiPi = 1

For A ∈ Ar we assign

P (A) =
∑

{i|xi∈A}
Pi.

Examples: a coin toss, distribution on Q

Definition 2 Dirac measure:

For x ∈ R, we define the Dirac measure δx on (R, B(R)) by setting δx(A) =

{
1 x ∈ A

0 otherwise
some-

times this is called a point mass at a point x. A discrete measure on R can be written as a sum of
Dirac measures. For example, throwing a die can be considered as

1
6 (δ1 + δ2 + ...+ δ6)

Measures with a density

Consider (Rn, B(Rn)) and the Lebesque measure λ. Consider a function f : Rn → R≥0 that is
measurable and satisifies

∫
fdλ = 1 =⇒

∫
f(x)dx = 1.

Then we define a measure γ on Rn by setting, for all A ∈ Ar,

γ(A) :=
∫
A
f(x)dx

γ is the probability measure on (Rn, B(Rn)) with density f.
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Figure 4: µ(A) = 0 =⇒
∫
A
fdµ ≡ γ(A) = 0

Figure 5: γA =
∫
A
fdλ

Notation: γ = f ∗ λ

Question: Can we describe every probability measure on (Rn, B(Rn)) in terms of density?

Answer: no!

Counterexample: δ0 Dirac measure.

On the same measure space (Rn, B(Rn)), if we have two measures λ, γ.

Question: γ(A) =
∫
A
∅dλ

Does ∅ exist?

Answer: No!

Definition 1. A probability measure on γ on (Rn, B(Rn)) is called absolutely continuous with respect
to another measure µ on (Rn, B(Rn)) if every µ-null set is also a γ-null set

∀B ∈ B(Rn) : µ(B) = 0 =⇒ γ(B) = 0.

Notation: γ ≪ µ

µ(A) = 0 =⇒
∫
A
fdµ ≡ γ(A) = 0

Example: N(0, 1) ≪ λ

γA =
∫
A
fdλ 5

Example: δ0 ̸≪ λ because

λ(0) = 0 but δ0(0) = 1
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Theorem 2. (Radon-Nikodym): Consider two probability measures γ, µ on (Rn.B(Rn)). Then the
following two statements are equivalent:

(1) γ has a density w.r.t µ.

(2) γ is absolutely continuous w.r.t µ.

If γ ≪ µ, then ∃ϕ such that δ(A) =
∫
A
∅dµ, ∅ exists and is unique.

Proof idea:

(1) =⇒ (2) easy

(2) =⇒ (1) We need to construct a density!

Consider the set G of all functions g with the following properties:

⃝⋆

{
• g is measurable, g ≥ 0

• g ∗ µ ≤ γ, that is ∀A ∈ B(Rn :
∫
A
gdµ ≤ γ(A).

• Observe: g = 0 satisfies ⃝⋆ , so G is not empty.

• If g,h both satisfy ⃝⋆ , then sup(g, h) satisfies ⃝⋆ .

• Define := supg∈G

∫
gdξ and construct a sequence (gn)n∈N such that lim

∫
gndµ = ξ.

• Define "density" f := supgn.

• Now prove: f is the density that we are looking for.
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