CSE 840: Computational Foundations of Artificial IntelligenceOct 30, 2023Lebesgue Measure on \mathbb{R}^n , A set that is not Lebesgue measurableInstructor: Vishnu BoddetiScribe: Kunzhe Song, Bowei Zhang, Peihao Yan

1 The Lebesgue Measure on

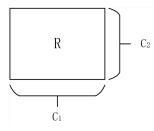
Want to construct a measure on \mathbb{R}^n . Want that rectangles of the form

$$[a_1,b_1) \times [a_2,b_2) \times \cdots \times [a_n,b_n)$$

have the "natural volume" given by

$$\prod_{i=1}^{n} (b_i - a_i)$$

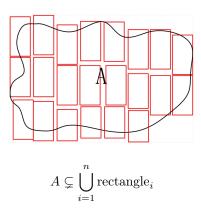
For a rectangle R with sides c_1 and c_2 :



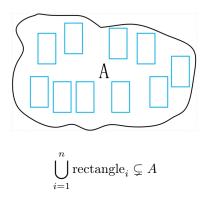
 $\operatorname{vol}(R) := c_1 \cdot c_2$

First approaches (Jordan, Riemann) attempted the following:

"Outer approximation":

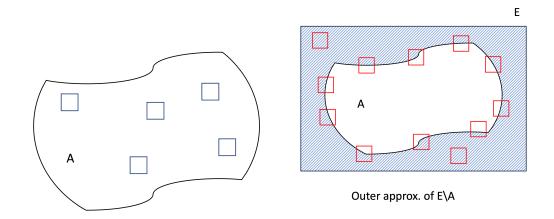


"Inner approximation":



A would be called "measurable" if outer and inner approximation converges.

- Allow for countable coverings.
- Replace inner approximation by an outer approximation of the complement.



Given a set E and its subset A, we have:

$$\mu(E) = \mu(E \setminus A) + \mu(A)$$
$$\implies \mu(A) = \mu(E) - \mu(E \setminus A)$$

• Need σ -algebra as underlying structure.

2 Outer Lebesgue Measure

Set the "natural volume" of rectangles:

$$R = [a_1, b_1] \times [a_2, b_2] \times \dots \times [a_n, b_n] \subseteq \mathbb{R}^n$$
$$|R| := \prod_{i=1}^n (b_i - a_i)$$

Definition 1 Definition of outer Lebesgue measure:

Let $A \subseteq \mathbb{R}^n$ be arbitrary. We define

$$\lambda(A) := \inf \left\{ \sum_{i=1}^{\infty} |R_i| \mid A \subsetneq \bigcup_{i=1}^{\infty} R_i, \text{ where } R_i \text{ is a rectangle} \right\}$$

We cover A by a countable union of rectangles, then take infimum. Observe:

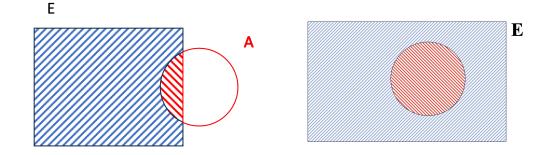
$$\lambda(A) \in [0,\infty) \cup \{\infty\}$$

We want to make $\lambda(A)$ into a measure.

Problem: If we use $P(\mathbb{R}^n)$ as σ -algebra, we run into contradictions. We need to restrict ourselves to a smaller σ -algebra.

Definition 2 We say that a set $A \subseteq \mathbb{R}^n$ is measurable if, for every $E \subseteq \mathbb{R}^n$:

$$\lambda(E) = \lambda(E \cap A) + \lambda(E \setminus A)$$



Denote by \mathcal{L} all measurable subsets of \mathbb{R}^n .

Theorem 3 The set \mathcal{L} forms a σ -algebra on \mathbb{R}^n .

The outer measure λ is in fact a measure on $(\mathbb{R}^n, \mathcal{L})$. On rectangles, it coincides with the "natural volume".

Examples:

- $\lambda(\{x\}) = 0$
- $\lambda(\mathbb{R}) = \infty$
- If $A \subseteq \mathbb{R}$ is countable, then $\lambda(A) = 0$. In particular, \mathbb{Q} is measurable and $\lambda(\mathbb{Q}) = 0$.

Proof: For $\varepsilon > 0$, define for all $a_i \in A$ the interval $[x_i, y_i)$ such that:

$$x_{i} = a_{i} - \frac{\varepsilon}{2^{i+1}} \quad \text{and} \quad y_{i} = a_{i} + \frac{\varepsilon}{2^{i+1}}$$

$$\underbrace{\frac{\varepsilon}{2^{i+1}}}_{x_{i}} \quad \underbrace{\frac{\varepsilon}{2^{i+1}}}_{x_{i}} \quad \underbrace{\frac{\varepsilon}{2^{i+1}}}_{y_{i}} \mathbb{R}$$

Then,

We have:

$$\lambda(A) \le \sum_{i=1}^{\infty} \lambda([x_i, y_i])$$

 $A \subseteq \bigcup_{i=1}^{\infty} [x_i, y_i]$

which simplifies to:

$$\sum_{i=1}^{\infty} \frac{\varepsilon}{2^{i+1}} = \varepsilon$$

Taking the inf. over all coverings, shows that:

$$\lambda(A) = 0$$

Comparison of \mathcal{L} (σ -algebra of Lebesgue measurable sets) with the Borel σ -algebra \mathcal{B} : (1) $\mathcal{B} \subseteq \mathcal{L}$:

- Open intervals are measurable, thus in \mathcal{L} .
- Any open set A in \mathbb{R}^n can be written as a countable union of open intervals:

$$A \subseteq \bigcup_{i=1}^{\infty} I_i$$
, I_i is an open interval.

(2) For every Lebesgue-measurable set L, there exists a set $B \in \mathcal{B}$ and $N \in \mathcal{L}$ with $\lambda(N) = 0$ such that $L = B \cup N$.

Summary: $\mathcal{L} \approx \mathcal{B}$ (up to sets of measure 0).

3 A non-measurable set

Measure problem: Search for a measure μ on $P(\mathbb{R})$ with the following properties: (1)

$$\mu([a,b]) = b - a \quad \text{where} \quad b > a$$

(2)

$$\mu(x+A) = \mu(A)$$
 for all $A \in P(\mathbb{R}), x \in \mathbb{R}$

 $\Rightarrow \mu$ does not exist.

Claim 4 Let μ be a measure on $P(\mathbb{R})$ with $\mu([0,1]) < \infty$ and (2). $\Rightarrow \mu = 0$.

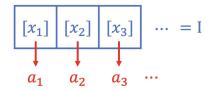
Proof:

(A) Definitions: Let I = (0, 1] with an equivalence relation on I

$$x \sim y \Leftrightarrow x - y \in \mathbb{Q}$$

i.e.

$$[x] := \{x + r \mid r \in \mathbb{Q}, x + r \in I\}$$



disjoint decomposition of I into boxes, possibly uncountable many of them! $A\subseteq I$ with properties:

- (i) For each [x], there is an $a \in A$ with $a \in [x]$.
- (ii) For all $a, b \in A$: $a, b \in [x] \Rightarrow a = b$.

 $A = \{a_1, a_2, \dots\}$, we need the axiom of choice of set theory.

 $A_n := r_n + A$, where $(r_n)_{n \in \mathbb{N}}$ enumeration of $\mathbb{Q} \cap (-1, 1]$.

(b) **Claim 5**

$$A_n \cap A_m = \emptyset \Leftarrow n \neq m$$

Proof:

$$\begin{aligned} x \in A_n \cap A_m \Rightarrow &x = r_n + a_n, a_n \in A \\ &x = r_m + a_m, a_m \in A \\ \Rightarrow &r_n + a_n = r_m + a_m \Rightarrow &a_n - a_m = r_m - r_n \in \mathbb{Q} \Rightarrow a_n \sim a_m \\ \Rightarrow &a_n \in [a_m] \Rightarrow a_n = a_m \Rightarrow &r_m = r_n \Rightarrow n = m \end{aligned}$$

(c) **Claim 6**

$$(0,1] \subseteq \bigcup_{n \in \mathbb{N}} A_n \subseteq (-1,2]$$

Proof: Exercise for you!

Now assume:

 μ is a measure on $P(\mathbb{R})$ with $\mu((0,1]) < \infty$ and (2). By (2): $\mu(r_n + A) = \mu(A), \forall n \in \mathbb{N}$ By (C): $\mu((0,1]) \le \mu\left(\bigcup_{n \in \mathbb{N}} A_n\right) \le \mu((-1,2])$

We know:

$$\mu((0,1]) =: C < \infty$$

$$\mu((-1,2]) = \mu((-1,0] \cup (0,1] \cup (1,2]) = 3C$$

(by using (2) and σ -addivity)
 ∞

$$\Rightarrow C \le \sum_{n=1}^{\infty} \mu(A_n) \le 3C$$
$$\Rightarrow C \le \sum_{n=1}^{\infty} \mu(A) \le 3C$$

(i) $\mu(A) = 0$, $\sum_{n=1}^{\infty} \mu(A) = 0 \Rightarrow C = 0$ (ii) $\mu(A) > 0$, $\sum_{n=1}^{\infty} \mu(A) = \infty$, $C \le \infty \le 3C$ $\Rightarrow \mu(A) = 0$

$$\begin{split} \mu(A) &= 0 \Rightarrow C = 0 \quad (\text{ hence } \mu((0,1]) = 0) \\ \mu(\mathbb{R}) &= \mu(\bigcup_{m \in \mathbb{Z}} (m,m+1]) = 0 \\ &\Rightarrow \mu = 0 \end{split}$$