3DFaceFill

An Analysis-By-Synthesis Approach to Face Completion

2

Rahul Dey

MICHIGAN STATE UNIVERSITY

What is face completion

Source: nVidia

Auto encoder

Auto encoder

Auto encoder

Face specific losses genfacecompletion

A brief survey

GFC (CVPR, 2017)

SymmFCNet (TIP, 2020)

(a) Stage I: Illumination-reweighted warping subnet.

(b) Stage II: Generative reconstruction subnet.

PartialConv, Nvidia (ECCV, 2018)

DeepFill, Adobe (ICCV, 2019)

PICNet (CVPR, 2019)

A brief survey

DSA (CVPR, 2020)

Groundtruth

Input

3D Object

Explicit 3D modeling of

Explicit 3D modeling of

Shape

Explicit 3D modeling of

Shape, Pose

Explicit 3D modeling of

Shape, Pose, Appearance

Explicit 3D modeling of

Shape, Pose, Appearance and Illumination

Explicit 3D modeling of

Shape, Pose, Appearance and Illumination

using vanilla architectures

Explicit 3D modeling of

Shape, Pose, Appearance and Illumination

using vanilla architectures

Shape, Pose, Appearance and Illumination

using vanilla architectures

Shape, Pose, Appearance and Illumination

using vanilla architectures

using advanced architectures
Proposed approach: 3D factorization

 $\Phi: \mathbf{I} \to (\mathbf{S}hape, \mathbf{A}lbedo, \mathbf{P}ose, \mathbf{I}llumination)$

Input

(1)

Input

Input

Input

1

1

Variations in Illumination, Shape and Expression

Variations in Illumination, Shape and Expression

VS.

Albedo

Variations in Illumination, Shape and Expression Variations in IIIu-

mination, Shape

and Expression

2D

Albedo

Disentangled from Illumination, Shape and Expression Variations in IIIu-

mination, Shape

and Expression

2D

Albedo

Disentangled from Illumination, Shape and Expression

Qualitative evaluation - Dark complexion

Input

Qualitative evaluation - Dark complexion

Input

DeepFillv2

PIC

DSA

Qualitative evaluation - Dark complexion

Input

Input

DeepFillv2

PIC

DSA

Input

DeepFillv2

PIC

DSA

3DFaceFill (Ours)

 ${\sf Groundtruth}$

Qualitative evaluation - Shape deformation

Input

Qualitative evaluation - Shape deformation

Input

DeepFillv2

PIC

DSA

Qualitative evaluation - Shape deformation

Input

DeepFillv2

PIC

DSA

3DFaceFill (Ours)

Groundtruth

Input

Input

DeepFillv2

PIC

PConv

Groundtruth

15/29

Qualitative evaluation - Kids

Input

Qualitative evaluation - Kids

Input

DeepFillv2

PIC

PConv

Qualitative evaluation - Kids

Input

DeepFillv2

PIC

PConv

3DFaceFill (Ours)

Groundtruth

Qualitative evaluation - Illumination variations

Input

Qualitative evaluation - Illumination variations

Input

DeepFillv2

PIC

SymmFCNet

Qualitative evaluation - Illumination variations

Input

DeepFillv2

PIC

SymmFCNet

3DFaceFill (Ours)

Groundtruth

LPIPS: Learned Perceptual Image Patch Similarity Ipips

LPIPS: Learned Perceptual Image Patch Similarity Ipips

LPIPS: Learned Perceptual Image Patch Similarity Ipips

Quantitative evaluation - CelebA-HQ Dataset

Qualitative evaluation - MultiPIE Pose

Qualitative evaluation - MultiPIE Pose

Qualitative evaluation - MultiPIE Pose

Qualitative evaluation - MultiPIE Illumination

Qualitative evaluation - MultiPIE Illumination

Qualitative evaluation - MultiPIE Illumination

Quantitative evaluation - MultiPIE Pose and Illumination

Input

3D completion and view synthesis

Ground Truth

Completed views

Input

Input Groundtruth

Input Groundtruth Iter1 Iter1-GT

Input Groundtruth Iter1 Iter1-GT Iter2 Iter2-GT

Input Groundtruth Iter1 Iter1-GT Iter2 Iter2-GT Iter2-Iter1

Input Groundtruth Iter1 Iter1-GT Iter2 Iter2-GT Iter2-Iter1

• Coarse inpainting leads to finer 3D modelling, which leads to finer inpainting

Input Groundtruth Iter1 Iter1-GT Iter2 Iter2-GT Iter2-Iter1

- Coarse inpainting leads to finer 3D modelling, which leads to finer inpainting
- We hypothesize that the stagnation (or slight dip) after Iter2 is because of worse pose estimation

Input Groundtruth Iter1 Iter1-GT Iter2 Iter2-GT Iter2-Iter1

- Coarse inpainting leads to finer 3D modelling, which leads to finer inpainting
- We hypothesize that the stagnation (or slight dip) after Iter2 is because of worse pose estimation
- Two iterations are sufficient

Input Groundtruth

Input Groundtruth NoSym Model

Input Groundtruth NoSym Model NoSym+Attn

- Attention helps in image completion
- For FC, symmetry is a stronger prior than attention

• Face completion using explicit 3D priors leads to geometrically and photometrically better results

- Face completion using explicit 3D priors leads to geometrically and photometrically better results
- Our method efficiently leverages facial symmetry

- Face completion using explicit 3D priors leads to geometrically and photometrically better results
- Our method efficiently leverages facial symmetry
- Qualitative and quantitative improvement in face completion under diverse conditions of shape, pose, illumination, *etc*

- Face completion using explicit 3D priors leads to geometrically and photometrically better results
- Our method efficiently leverages facial symmetry
- Qualitative and quantitative improvement in face completion under diverse conditions of shape, pose, illumination, *etc*
- Limitations:
 - Completes only the face region, excluding inner mouth

- Face completion using explicit 3D priors leads to geometrically and photometrically better results
- Our method efficiently leverages facial symmetry
- Qualitative and quantitative improvement in face completion under diverse conditions of shape, pose, illumination, *etc*
- Limitations:
 - Completes only the face region, excluding inner mouth
 - Resolution is limited by the resolution of the 3D mesh

Explicit 3D and Symmetry Priors

Thank you.