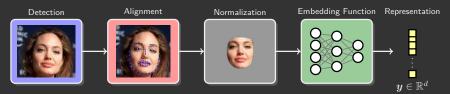
Secure Face Matching Using Fully Homomorphic Encryption

Vishnu Boddeti Michigan State University

October 23rd, 2018

>>> Face Representation and Matching

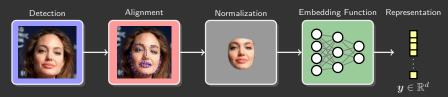
* Face Representation:



[2/1]

>>> Face Representation and Matching

* Face Representation:

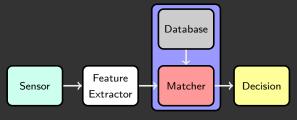


* Face Matching:

[2/1]

>>> Security Vulnerabilities

* Attacks on Biometric Systems:

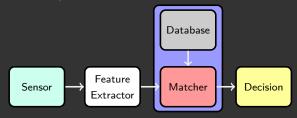


[3/1]

Mai, Guangcan, Kai Cao, C. YUEN Pong, and Anil K. Jain. "On the Reconstruction of Face Images from Deep Face Templates." PAMI 2018

>>> Security Vulnerabilities

* Attacks on Biometric Systems:



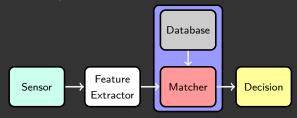
- * Attacks on Templates:
 - * Face reconstruction from template¹

¹ Mai, Guangcan, Kai Cao, C. YUEN Pong, and Anil K. Jain. "On the Reconstruction of Face Images from Deep Face Templates." PAMI 2018

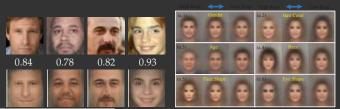
[3/1]

>>> Security Vulnerabilities

* Attacks on Biometric Systems:

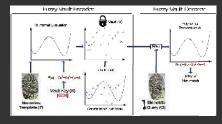


- * Attacks on Templates:
 - * Face reconstruction from template¹
 - * Privacy leakage through attribute prediction from template

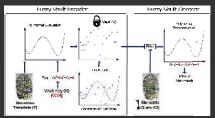


¹ Mai, Guangcan, Kai Cao, C. YUEN Pong, and Anil K. Jain. "On the Reconstruction of Face Images from Deep Face Templates." PAMI 2018

[7]\$ -



(a) Fuzzy Vault





(a) Fuzzy Vault

(b) Geometrical Transformations

[~]\$ _

Rancom

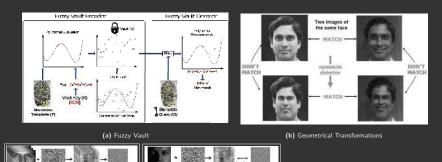
acrad

Randon. Number

Girne a n

PIN

Lusges



Eartypied

test image

Bacquel

MACE files

(c) Correlation with Random Masks

Freignan

Exergence

training images MACE filter

Les maga

Randon

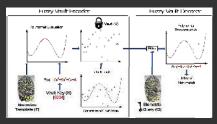
kerest

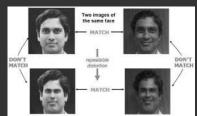
Number

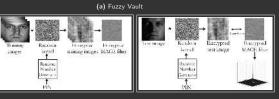
Garagere

PIN

[4/1]







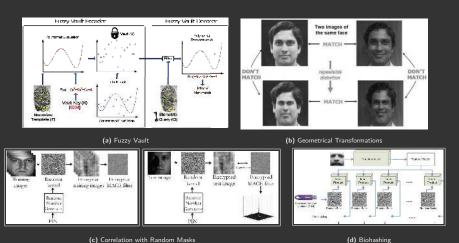
(b) Geometrical Transformations



(c) Correlation with Random Masks

(d) Biohashing

[~]\$ _



Drawback: Trade-Off matching performance for template security.

[*]5 -

* Data encryption is an attractive option.

[5/1]

- Data encryption is an attractive option.protects user's privacy
 - protects user's privac

[^{*}]\$ ₋ [5/1]

- * Data encryption is an attractive option.
 - * protects user's privacy
 - * enables free and open sharing

[*]**S** _ [5/1]

- * Data encryption is an attractive option.
 - * protects user's privacy
 - enables free and open sharing
 - * mitigate legal and ethical issues

[^{*}]\$ ₋ [5/1]

- * Data encryption is an attractive option.
 - protects user's privacy
 - enables free and open sharing
 - * mitigate legal and ethical issues
- * Can we encrypt the biometric signatures?

[^{*}]\$ ₋ [5/1]

- Data encryption is an attractive option.
 - protects user's privacy
 - enables free and open sharing
 - mitigate legal and ethical issues
- * Can we encrypt the biometric signatures?
- * Can we perform biometric matching in the encryption domain?

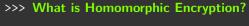
[5/1]

- Data encryption is an attractive option.
 - * protects user's privacy
 - enables free and open sharing
 - * mitigate legal and ethical issues
- * Can we encrypt the biometric signatures?
- * Can we perform biometric matching in the encryption domain?
- * Can we maintain matching performance in the encrypted domain?

[5/1]

- Data encryption is an attractive option.
 - * protects user's privacy
 - * enables free and open sharing
 - * mitigate legal and ethical issues
- * Can we encrypt the biometric signatures?
- * Can we perform biometric matching in the encryption domain?
- * Can we maintain matching performance in the encrypted domain?
- * Encryption scheme needs to allow computations directly on the encrypted data.

[7]\$ _



* Encryption that allows computations on ciphertext.

- * Encryption that allows computations on ciphertext.
- Partially Homomorphic Encryption: allows homomorphic additions or multiplications

- * Encryption that allows computations on ciphertext.
- Partially Homomorphic Encryption: allows homomorphic additions or multiplications
- * Somewhat Homomorphic Encryption: allows limited number of homomorphic additions and multiplications

- st Encryption that allows computations on ciphertext.
- Partially Homomorphic Encryption: allows homomorphic additions or multiplications
- * Somewhat Homomorphic Encryption: allows limited number of homomorphic additions and multiplications
- Fully Homomorphic Encryption: allows unlimited number of additions and multiplications

- Encryption that allows computations on ciphertext.
- * Partially Homomorphic Encryption: allows homomorphic additions or multiplications
- * Somewhat Homomorphic Encryption: allows limited number of homomorphic additions and multiplications
- Fully Homomorphic Encryption: allows unlimited number of additions and multiplications

This Paper Explores:

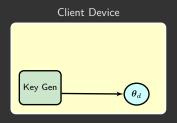
- Encryption that allows computations on ciphertext.
- Partially Homomorphic Encryption: allows homomorphic additions or multiplications
- * Somewhat Homomorphic Encryption: allows limited number of homomorphic additions and multiplications
- Fully Homomorphic Encryption: allows unlimited number of additions and multiplications

This Paper Explores:

- * feasibility of fully homomorphic encryption for secure face matching.
- efficiency of fully homomorphic encryption for secure face matching.

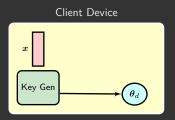
[^]\$ _

- Client device:
 - * generates cryptographic keys



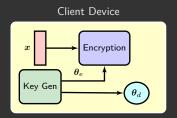
[7]5 -

- Client device:
 - * generates cryptographic keys
 - * captures biometric signature + extracts feature



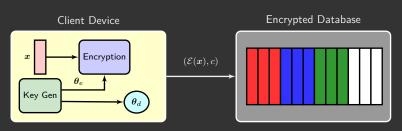
[*]\$ -

- * Client device:
 - * generates cryptographic keys
 - * captures biometric signature + extracts feature
 - * encrypts feature



[*]\$ -

- * Client device:
 - * generates cryptographic keys
 - * captures biometric signature + extracts feature
 - * encrypts feature
 - * transmits encrypted feature + identity label to remote database

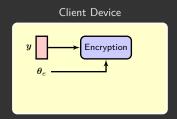


[7/1]

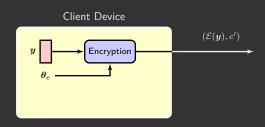
- Client device:
 - * captures biometric signature + extracts feature

Client Device

- * Client device:
 - * captures biometric signature + extracts feature
 - * encrypts feature

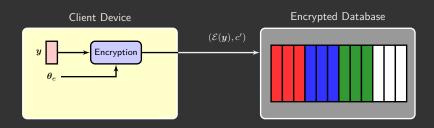


- * Client device:
 - * captures biometric signature + extracts feature
 - * encrypts feature
 - * transmits encrypted feature + claimed identity label to remote database



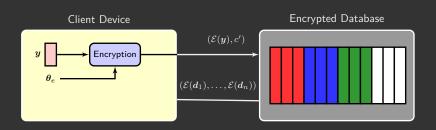
[8/1]

- * Client device:
 - * captures biometric signature + extracts feature
 - * encrypts feature
 - * transmits encrypted feature + claimed identity label to remote database
- * Remote Database:
 - * homomorphic inner product between encrypted probe and gallery



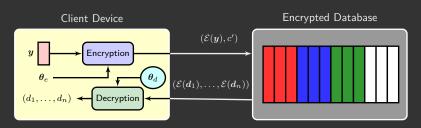
[8/1]

- * Client device:
 - * captures biometric signature + extracts feature
 - * encrypts feature
 - * transmits encrypted feature + claimed identity label to remote database
- * Remote Database:
 - * homomorphic inner product between encrypted probe and gallery
 - * transmits encrypted scores to client



[8/1]

- * Client device:
 - * captures biometric signature + extracts feature
 - * encrypts feature
 - * transmits encrypted feature + claimed identity label to remote database
- * Remote Database:
 - * homomorphic inner product between encrypted probe and gallery
 - * transmits encrypted scores to client
- * Client device:
 - * decrypts received scores and makes decision



[9,1]

>>> Homomorphic Inner Products

* Feature Matching:

Euclidean Distance:
$$d(x,y) = \|x-y\|_2^2 = x^Tx + y^Ty - 2x^Ty$$

Cosine Similarity: $s(x,y) = \frac{x^Ty}{\|x\|\|y\|}$

[^]\$ _ [9/1]

>>> Homomorphic Inner Products

Feature Matching:

Euclidean Distance:
$$d(x,y) = \|x-y\|_2^2 = x^Tx + y^Ty - 2x^Ty$$

Cosine Similarity: $s(x,y) = \frac{x^Ty}{\|x\|\|y\|}$

* Inner Product:

$$m{x}^Tm{y} = \sum_{i=1}^d x_i y_i$$

>>> Homomorphic Inner Products

Feature Matching:

Euclidean Distance:
$$d(x,y) = \|x-y\|_2^2 = x^Tx + y^Ty - 2x^Ty$$

Cosine Similarity: $s(x,y) = \frac{x^Ty}{\|x\|\|y\|}$

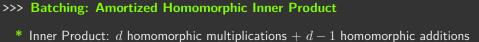
* Inner Product:

$$m{x}^Tm{y} = \sum_{i=1}^d x_i y_i$$

* Homomorphic Inner Product:

$$s(oldsymbol{x},oldsymbol{y}) = \mathcal{D}\left(\sum_{i=1}^d \mathcal{E}(x_i,oldsymbol{ heta}_e)\mathcal{E}(y_i,oldsymbol{ heta}_e),oldsymbol{ heta}_d
ight)$$

[[^]]\$ ₋ [9/1]



Timer Froduct. a nomomorphic multiplications + a - 1 nomomorphic additions

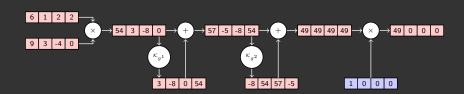
- * Inner Product: d homomorphic multiplications $+\ d-1$ homomorphic additions
- f * Complexity: homomorphic multiplication >>> homomorphic addition

- * Inner Product: d homomorphic multiplications $+\ d-1$ homomorphic additions
- * Complexity: homomorphic multiplication >>> homomorphic addition
- * Batching Inner Product: 1 homomorphic multiplications $+\log_2(d)$ homomorphic additions

- * Inner Product: d homomorphic multiplications $+\ d-1$ homomorphic additions
- * Complexity: homomorphic multiplication >>> homomorphic addition
- * Batching Inner Product: 1 homomorphic multiplications $+\log_2(d)$ homomorphic additions
- * Template Size: batching size <<< no batching size

- * Inner Product: d homomorphic multiplications $+\ d-1$ homomorphic additions
- * Complexity: homomorphic multiplication >>> homomorphic addition
- * Batching Inner Product: 1 homomorphic multiplications $+\log_2(d)$ homomorphic additions
- * Template Size: batching size <<< no batching size
- * Key Idea: amortized inner product

- * Inner Product: d homomorphic multiplications + d-1 homomorphic additions
- * Complexity: homomorphic multiplication >>> homomorphic addition
- * Batching Inner Product: 1 homomorphic multiplications $+ \log_2(d)$ homomorphic additions
- * Template Size: batching size <<< no batching size
- Key Idea: amortized inner product
 - * Encode entire vector at once + repetitive circular shift and addition



>>> Experimental Setup

Datasets: LFW, IJB-A, IJB-B and CASIA

* Models: FaceNet (128-D) and SphereFace (512-D)

* Evaluation: True Accept Rate 0.01%, 0.1% and 1% FAR

* Options: different quantization, security levels, dimensionality of features

[11/1]

- * Pairwise Matching Time
 - * Homomorphic Encryption
 - * Homomorphic Matching
 - * Homomorphic Decryption
- * Template Size
 - * Database storage size
 - * Communicating encrypted templates

[12/1]

- Pairwise Matching Time
 - * Homomorphic Encryption
 - * Homomorphic Matching
 - * Homomorphic Decryption
- * Template Size
 - Database storage size
 - Communicating encrypted templates

Table: Matching Time and Template Memory

Security	Dim	No F	HE		No Batching				Batching				
in bits	ווווט	Time	Mem		Time	(ms)		Mem		Time	(ms)		Mem
(λ)	(d)	(μs)	(KB)	Enc	Score	Dec	Total	(MB)	Enc	Score	Dec	Total	(KB)
	64	0.44	2.0										
	128	0.89	4.0										
	512	3.48	16.0										
	1024	7.49	32.0										

[12/1]

- Pairwise Matching Time
 - * Homomorphic Encryption
 - * Homomorphic Matching
 - * Homomorphic Decryption
- * Template Size
 - * Database storage size
 - * Communicating encrypted templates

Table: Matching Time and Template Memory

Security	Dim	No I	FHE		No Batching				Batching					
in bits	יוווע	Time	Mem		Time (ms)		Mem		Time	(ms)		Mem	
(λ)	(d)	(μs)	(KB)	Enc	Score	Dec	Total	(MB)	Enc	Score	Dec	Total	(KB)	
	64	0.44	2.0	4.40	5.25	0.01	9.66	0.25						
	128	0.89	4.0	17.57	21.05	0.02	38.64	1.0						
128	512	3.48	16.0	280.19	343.81	0.08	624.07	16.5						
	1024	7.49	32.0	2214.88	2924.75	0.33	5139.97	131.0						

- Pairwise Matching Time
 - * Homomorphic Encryption
 - * Homomorphic Matching
 - * Homomorphic Decryption
- * Template Size
 - Database storage size
 - * Communicating encrypted templates

Table: Matching Time and Template Memory

Security	Dim		FHE		No Batching				Batching					
in bits	ווווט	Time	Mem		Time (ms)		Mem		Time	(ms)		Mem	
(λ)	(d)	(μs)	(KB)	Enc	Score	Dec	Total	(MB)	Enc	Score	Dec	Total	(KB)	
	64	0.44	2.0	4.40	5.25	0.01	9.66	0.25	0.07	0.17	0.01	0.25	2.0	
	128	0.89	4.0	17.57	21.05	0.02	38.64	1.0	0.14	0.38	0.02	0.59	4.0	
128	512	3.48	16.0	280.19	343.81	0.08	624.07	16.5	0.58	1.80	0.07	2.45	16.0	
	1024	7.49	32.0	2214.88	2924.75	0.33	5139.97	131.0	2.27	8.36	0.30	11.42	32.0	

[12/1]

>>> Homomorphic Matching Performance

* Face verification: different quantization levels

Table: Face Recognition Accuracy (TAR @ FAR in %)

Dataset	Method	128	-D Facel	Net		512-D SphereFace				
Dataset	Method	0.01%	0.1%	1%	_	0.01%	0.1%	1%		
	No FHE	25.77	48.31	74.47		7.86	31.27	69.83		
IJB-B	FHE (2.5×10^{-3})	25.78	48.28	74.46		7.86	31.27	69.82		
	FHE (1.0×10^{-2})	25.71	48.31	74.44		7.80	31.29	69.75		
	FHE (1.0×10^{-1})	23.75	46.08	72.87		7.49	30.92	67.45		

[13/1]

* Facial template security is of growing importance.

>>>	Take	Home	Messag

* Facial template security is of growing importance.

* Fully homomorphic face matching in encrypted domain is feasible and practical.

[14/1]

* Facial template security is of growing importance.

* Fully homomorphic face matching in encrypted domain is feasible and practical.

* What next?

[14/1]

* Facial template security is of growing importance.

- * Fully homomorphic face matching in encrypted domain is feasible and practical.
- * What next?
 - * Limitation: score thresholding is performed after decryption
 - * Consequence: hill climbing attack is still possible from decrypted score

[]\$ -

* Facial template security is of growing importance.

- * Fully homomorphic face matching in encrypted domain is feasible and practical.
- * What next?
 - * Limitation: score thresholding is performed after decryption
 - * Consequence: hill climbing attack is still possible from decrypted score
 - * Limitation: encryption and decryption key are on client device
 - * Consequence: key management on client device is the weakest link

[14/1]