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Mechanics-informed autoencoder enables
automated detection and localization of
unforeseen structural damage

Xuyang Li , Hamed Bolandi, Mahdi Masmoudi , Talal Salem, Ankush Jha,

Nizar Lajnef & Vishnu Naresh Boddeti

Structural healthmonitoring ensures the safety and longevity of structures like

buildings and bridges. As the volume and scale of structures and the impact of

their failure continue to grow, there is a dire need for SHM techniques that are

scalable, inexpensive, can operate passively without human intervention, and

are customized for each mechanical structure without the need for complex

baseline models. We present a novel “deploy-and-forget” approach for auto-

mated detection and localization of damage in structures. It is a synergistic

integration of entirely passive measurements from inexpensive sensors, data

compression, and a mechanics-informed autoencoder. Once deployed, the

model continuously learns and adapts a bespoke baseline model for each

structure, learning from its undamaged state’s response characteristics. After

learning from just 3 hours of data, it can autonomously detect and localize

different types of unforeseen damage. Results fromnumerical simulations and

experiments indicate that incorporating the mechanical characteristics into

the autoencoder allows for up to a 35% improvement in the detection and

localization of minor damage over a standard autoencoder. Our approach

holds significant promise for reducing human intervention and inspection

costswhile enablingproactive andpreventivemaintenance strategies. Thiswill

extend the lifespan, reliability, and sustainability of civil infrastructures.

Structural healthmonitoring (SHM)plays a vital role inmonitoring and

ensuring the safety and reliability of various engineering systems. Poor

monitoring and maintenance can lead to severe damage or even cat-

astrophic failures of structures. Numerous structural failures have

occurred despite frequent manual inspections and the adoption of

many active sensing technologies over the years. For instance, a severe

crack in the I-40 Bridge in Memphis went undetected for years before

being discovered in 20211, resulting in long-term road closure, sub-

stantial economic losses, and significant safety concerns among the

public. Similarly, in 2022, a bridge in Pittsburgh collapsed due to the

corrosion and deterioration of the bridge legs2, damaging several

vehicles and causing many injuries. Preventing such incidents as the

built environment scales and ages necessitates the development of

passive, inexpensive, and continuous structural monitoring techni-

ques, with the ultimate aim of detecting, localizing, and identifying

different types of damage at an early stage. Such solutions would

complement existing active and costly manual inspections.

SHM systems often employ sensors to measure physical quan-

tities such as strain, vibration, and temperature. Themeasurements are

coupled with a numerical model to infer the structure’s health condi-

tion. Real-world deployment of SHM has to contend with multiple

challenges due to the complexity and diversity of structures, sensors,

and damage scenarios. First, detecting and localizing damages as early

as possible is critical to extend the structure’s longevity. However,

minor damage, hidden or distributed in the structure, may not readily

manifest in the sensor data and cannot be identified by the numerical
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model. Second, due to the sheer diversity of structures and associated

damage they may endure, SHM methods have to contend with

unknown or novel damage without being able to rely on prior knowl-

edge or annotated data. Third, multiple sensors are typically used at

different locations on the structure. Seamless SHM will require a

combination of inexpensive passive sensors and algorithms that can

simultaneously and effectively utilize data from multiple sensors.

While many solutions have been developed for SHM, existing

solutions are limited in multiple respects. They either need active

measurements3–7, detect but do not localize damage5,6,8–13, or employ

technology that is accurate but very complex and expensive, such as

guided waves3,4,14 and acoustic emissions6,7. Furthermore, some are

based on predefined damage features or thresholds15,16, while others

are limited to identifying known types of damage17,18 only.

In the broader context of structural engineering, machine learn-

ing (ML) methods are increasingly being relied upon for addressing

many problems. For instance, Physics-Informed Neural Networks19–21,

which leverage both data and knowledge of the underlying physics,

and Graph Neural Networks22–26 are commonly being employed for

forward and inverse problems. These solutions promise significant

computational gains over traditional numerical methods. However,

the need for precise knowledge of the governing equations, para-

meters, loading, etc., limits their applicability for detecting and loca-

lizing damage in the real world, where such information is usually

unavailable.

Current SHM solutions instead rely on more traditional ML such

as support vector machines27 for steel bridge structures, neural net-

works for buildings28, concrete slabs9, pavement18, and steel frames10,

and recurrent neural networks29, long short-term memory and gated

recurrent units30 to detect, localize, and quantify structural defects.

Such solutions have also been proposed to detect damage in gusset

plates31–34, bridges35–37, highway sections38, and railways39,40. An exten-

ded discussion of machine learning-based approaches for SHM can be

found in Supplementary note 4.

The primary drawback of the aforementioned body of work is

their need for annotated sensor data with labels corresponding to

normal or damaged operating conditions. Obtaining such annotations

in large quantities and for each deployment is costly and impractical.

Furthermore, models learned through explicit supervision often fail to

generalize to unseen damage scenarios. A few unsupervised anomaly

detection approaches have also been developed with a focus on

autoencoders41–43 and principal component analysis (PCA)13,44–46.

Besides detection, a limitednumber of approaches focusedondamage

localization with finite element models47, convolutional neural

networks48,49, and autoencoders50. These existing unsupervised

methods50,51, however, are typically designed to model data from a

single sensor or do not take the domain attributes of the structure and

the sensor placement into account when detecting or localizing

damage.

We propose Mechanics-Informed Damage Assessment of Struc-

tures (MIDAS), a near-real-time SHM framework for automated

damage detection and localization. Our solution is based on the pre-

mise that sensor data collected from a structure during its regular

operation represents its expected behavior, and any deviation from

this behavior indicates potential damage. A structurewewish to assess

for damage is instrumented with sensors, and data from its unda-

maged state is collected to establish the reference (baseline) for

damage detection through unsupervised learning. The established

reference can be employed to detect and localize damage. This solu-

tion affords adaptation to known and unknowndamage across diverse

structures like gusset plates and beam-columns.

The key contribution of MIDAS is the seamless integration of

inexpensive sensors, data pre-processing in the form of compression,

and a customized autoencoder called Mechanics-Informed Auto-

encoder (MIAE). From a sensor perspective, our solution is agnostic to

the sensor technology and can even employ wireless sensors12,52–54,

which are becoming cost-effective and widely used today. These sen-

sors are easier to install and maintain and are often self-powered,

rendering them very effective for long-term monitoring. From a pre-

processing perspective, we leverage the on-device data compression

(edge computing)53–55 offered by modern sensors and use a highly

(temporally) compressed version of the raw sensor data. Subse-

quently, variations due to environmental or loading fluctuations are

filtered away by the compression. Therefore, any abnormal patterns in

the data are indicative of damage. From the neural network perspec-

tive, we adopt an autoencoder that learns a compact representation of

the data streams from multiple sensors while incorporating the

mechanical relations between their strain responses. Such a design

significantly enhances the detection and localization of damage in the

structure.

Figure 1 shows an overview of MIDAS. Damage detection is

achieved by comparing the reconstruction error of the instantaneous

sensor data in time windows with that of the undamaged baseline. To

localize the damage, we further compute the norms of reconstruction

errors at each sensor and interpolate them between the sensors. This

approach does not require data from damaged structures for training,

which is a significant advantage of our method, given that collecting

realistic damaged data on large-scale structures is practically infea-

sible. Other techniques that use simulated damage scenarios are often

inaccurate and impractical for real-time applications due to the con-

stant need for re-calibration. In contrast, MIDAS relies solely on

reference data to establish an intact model reference and detect

damage by tracking deviations from this reference. Furthermore, with

the integrated mechanical knowledge, MIAE significantly improves its

performance indetecting and localizing damage earlywhen it isminor.

Results
We evaluate the effectiveness of MIDAS in three ways: (i) numerical

simulation of a gusset plate, (ii) experimental validation on a gusset

plate, and (iii) experimental validation on a beam-column structure.

Beyond these structures, MIDAS can be readily employed to monitor

the health of other kinds of structural components.

Numerical simulation–a gusset plate
An intact (undamaged) polygon-shaped steel plate is analyzed using

finite element simulations. The mesh details are shown in Fig. 2a. This

undamaged plate is subjected to random traffic loads to simulate the

normal operations of a structural component. The detailed dimen-

sions of the plate are shown in Fig. 2b (thickness is 1.2 cm). Strain

responses are measured at 45 points within the structure as marked

in Fig. 2b.

Establishing reference baseline of structural behavior. Time-series

data fromthe sensors aremeasured, segmented, and then compressed

(more details are provided in the “Methods” section). The compressed

data consists of the running mean μ and standard deviation σ for each

sensor. Subsequently, the MIAE utilizes this data for training by seek-

ing to reconstruct the input compressed sensor data. The trained

network computes a reference for reconstruction errors, which

involves themean squared errorr (MSE) between the input and output

for each sensor. This reference is the intact structure’s baseline,

representing the undamaged structural condition.

Damage detection evaluation. We randomly introduced cracks at

various locations in the finite element model. To simulate different

cracks in each damage scenario, we increase the crack length l from

0.4 cm to 6 cmwhile keeping the crackwidthw and orientation (angle)

α fixed. An example of the damagedplate and the correspondingmesh

is illustrated in Fig. 2c (w =0.4 cm and α = 30°). For evaluation, com-

pressed sensor data is now obtained from the damaged plate over
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small timewindows andprocessedby the trainedmodel to obtain their

reconstruction errors. These errors are compared to the reference

reconstruction errors frombaseline behavior to identify damage in the

structure. The distribution of the reconstruction errors can reveal how

closely the response behavior of the damaged structure resembles the

original undamaged system. Additionally, we limit the number of

anomaly data samples to 20 or fewer to demonstrate MIDAS’s rapid

damage detection capabilities. Such a capability allows MIDAS to be

efficient, effective, and deployable in real-world applications for near-

real-time damage detection.

Figure 2d presents reconstruction error histograms comparing

the undamaged baseline to the damaged structure with varying crack

lengths. For small damage (0.8 cm), the reconstruction errors overlap

with the reference undamaged reconstruction errors with only minor

separation in the distributions, suggesting a similarity in structural

response behavior. As the damage grows to a crack of length 2 cm,

noticeable differences emerge between the two reconstruction error

distributions. These disparities indicate that the model cannot accu-

rately reconstruct the sensor data due to the distribution shift and can

thus detect the damage. Furthermore, as the crack length increases to

4 cm, the distribution of reconstruction errors for data from the

damage shifts towards higher magnitudes. Therefore, damage to the

structure can be easily detected in this case.

We also evaluated the proposed MIAE against a standard auto-

encoder w.r.t. a range of metrics, including accuracy, precision, F1-

score, and area under the receiver operating characteristic (AUROC)56

(detailed information on computing these metrics is provided in the

“Methods” section). Figure 2e reveals that MIAE outperforms the

autoencoders in all five metrics across a wide range of crack lengths.

Crucially, MIAE exhibits significant improvement in detection perfor-

mancewhen the crack isminor (before 2 cm), which is highly desirable

for early detection in real applications, especially on fracture-critical

structural components that typically lack a baseline model and exhibit

large behavioral differences even among similarly designed

components.

Detection performance comparison against other MLmethods. We

compare MIAE with four baseline methods: Isolation Forest57, One-

Class support vector machines (OCSVM), LODA58, and autoencoders

using sensor data from small (0.8 cm), medium (2 cm), and large

(4 cm) crack lengths, across 37 cases with cracks at different locations

and widths. The results are shown in Fig. 2f. MIAE consistently sur-

passes all other methods in accuracy, recall, F1-score, and AUROC.

Compared to standard autoencoders, the incorporated mechanical

knowledge in MIAE significantly improves damage detection perfor-

mance, particularly for small cracks.

Damage localization evaluation. Apart from detecting damage,

another critical desideratum of SHM is localizing the damage on the

structure. MIAE demonstrates robust localization ability, even when

the damage is relatively small. Unlike the detection process, which

involves comparing reconstruction errors from all the sensors, locali-

zation is performed by computing the norms of reconstruction errors

at each sensor to obtain a damage score (see “Method” section for

details). A high score indicates thepresenceof damage adjacent to that

sensor. To localize the damage more precisely, we interpolate the

scores between the sensors and identify the peak score location.

Figure 3a shows the damage localization heatmaps for different

crack lengths and the exact damage location (red line). The intact

structure exhibits a uniform damage score in the first column, indi-

cating the absence of detected damage. As a crack emerges, MIAE

accurately localizes a medium-size crack (2 cm) and a large-size crack

(4 cm), as indicated by a high damage score (yellow region). The high

damage score precisely overlays the cracked region as it grows to a

very large crack (6 cm).

Here, we compare against two baseline dimensionality reduction

methods, (i) SPIRIT59,60, which performs linear dimensionality reduc-

tion through online PCA, and (ii) a standard autoencoder that per-

forms non-linear dimensionality reduction through a deep neural

network. Compared to the baselines (second and third row of Fig. 3a

for SPIRIT and autoencoder, respectively), MIAE (non-linear dimen-

sionality reduction with mechanical consistency) is capable of loca-

lizing damage at an earlier stage (2 cm, second column) of crack

propagation. Autoencoder can only localize the very-large crack (6 cm,

fourth column), while SPIRIT completely fails to localize the crack.

These results highlight the benefit of non-linear (autoencoder) over

linear (SPIRIT) dimensionality reduction and the additional benefit

afforded by incorporating mechanical constraints (MIAE).

AutoencoderMIAE

Compressed

sensor data

MIAE

Compressed

sensor data

Model 

learning

Mechanics 

knowledge

Intact structure, 

unknown condi�ons

Crack

Strain

sensor

Detect damage

Localize damage

r
a

et
&

r
a

e
W

Data 

reconstruc�on

(damage)

Data 

reconstruc�on

(no damage)

Data

evalua�on 

with model

MIDAS Framework

Fig. 1 | Overview of MIDAS, the automated structural damage detection and

localization framework. Raw structural response data from the sensors are

compressed, and MIAE is trained purely on the response from the structure’s

undamaged state. No additional information is leveraged besides the pairwise

mechanical relations between the strain responses. Once trained, the distribution

of reconstruction errors between the network’s input and output on the training

data serves as a reference representation of an intact structure’s response. After

deployment, the trained model processes data from the sensors, and resultant

reconstruction errors are compared to the reference error distribution to detect

and localize potential damage. An observable shift in reconstruction errors (top

right) highlights the detection of damage. The incorporatedmechanical knowledge

notably amplifies the distribution shift, significantly enhancing damage detection

at an early stage. Sensor-wise error comparisons are interpolated (heatmaps at the

bottom right) to localize anomalies representing the onset of damage.

Article https://doi.org/10.1038/s41467-024-52501-4

Nature Communications |         (2024) 15:9229 3

www.nature.com/naturecommunications


We also evaluated damage localization accuracy for the same

damage detection cases we considered earlier. Figure 3b reports the

fraction of cases, out of 37, where the damage was successfully loca-

lized at different crack lengths. Compared to autoencoder and SPIRIT,

MIAE has an overall higher success rate and around 35% better locali-

zation formedium-sized cracks ranging from 1.5 to 3 cm. Furthermore,

MIAE can localize most of the cracks at a size of 3 cm while the auto-

encoder still fails in many cases. Damage localization results for other

cases are shown in Supplementary Fig. 1, and Supplementary Movie 1

shows a visualization of the damage detection and localization

process.

Damage detection and localization with a reduced number of

sensors. So far, we evaluated the damage detection and localization

performance of MIAE using all available sensors (45 in number).

However, real-world applications seek to minimize the number of

sensors and instead place a few sensors strategically. Therefore, we

evaluate the damage detection and localization performance by

varying the number of sensors. When the number of sensors is fewer

than 10, they are strategically selected to ensure coverage over the

plate (see Supplementary Note 6 for details). Otherwise, the sensors

are placed randomly on the structure. To ensure reliability, we repe-

ated the evaluationmultiple times for a given sensor budget, each time

with a different configuration. Figure 4a shows the damage detection

performance for a crack size of 0.8 cm as we vary the number of sen-

sors. The performance of methods such as Isolation Forest, OCSVM,

and LODA shows no appreciable improvement as we increase the

number of sensors since they are designed to operate separately on

data from each sensor. In contrast, autoencoder andMIAE are learned

on data available from all sensors. They can better leverage the addi-

tional information available as we increase the number of sensors and

thus gain performance. Importantly, MIAE leverages sensor correla-

tions based onmechanics knowledge, achieving the best performance

among all evaluated methods with only four sensors while getting

more accurate as more sensors are available.

Figure 4b shows a configuration of four sensors (S9, S13, S30, and

S34, marked as black dots within the localization map) utilized to

localize damage from different scenarios. Compared to the standard

autoencoder, MIAE achieves better localization accuracy (notice that

the peak damage scores are closer to the crack). SPIRIT failed to

localize damage with only four sensors, so we do not report these

results. Next, we extensively analyze the localization performance as

the fraction of cases correctly localized as the crack size increases.

Specifically, in the 4-sensor setup, we estimate the peak damage score

location as the centroid of the four sensors, which is weighted by their

damage scores. In this case, we define localization as successful if the

true damage is within a radius of 13 cm (half of the sensor-to-sensor

gap) around the peak location in the damage score map. As shown in

Fig. 4c, MIAE outperforms both the autoencoder and SPIRIT, achieving

around 10–35% better localization performance across different crack

lengths. In summary, even with a limited number of sensors, MIAE

exhibits excellent damage detection and localization performance.

Environmental effects consideration. Here, we explore the impact of

environmental factors, such as noisy data sources and temperature

variations, on structural damage assessment. Since strain sensors

Increasing

crack length

a b c d

e

f

Fig. 2 | Damage detection for a cracked gusset plate. a Finite elementmesh of an

intact plate, boundary conditions, and loading. b Sensor arrangement with labels.

cA typical cracked plate and itsmeshing. Different crack lengths represent damage

progression. d Distributions of reconstruction errors of the structure from its

undamaged reference and damaged states. As the crack progresses (three different

crack lengths), the error distribution shifts to the right and becomes more distinct

from the undamaged reference. e Damage detection performance as the crack

length increases. MIAE outperforms the baseline autoencoder in all five metrics,

especially in the early stages of damage emergence. f Compared to baseline

anomaly detection methods, MIAE exhibits the best detection accuracy in the

undamaged scenario and consistently achieves higher damage detection rates

across all the evaluated metrics and crack lengths. The error bar is defined as the

standard deviation across all cases with cracks. Source data are provided as a

Source Data file.
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typically provide highly accuratemeasurements, a Gaussiannoise level

of 0.5% is introduced to the raw strain data from four sensors (S9, S13,

S30, and S34). This data undergoes preprocessing (compression), and

MIAE is trained on such data from the structures’s undamaged state.

The trained model is then evaluated using noisy sensor data under

various crack scenarios. Figure 4d shows the testing accuracy for

undamaged data and damage detection performance. Even with only

four sensors, MIAE outperforms the other models when evaluated on

undamaged scenarios and excels at damage detection for large cracks

of length 4 cm (can detect even smaller cracks if more sensors are

used). These results underscore MIAE’s robustness against noisy sen-

sor data for detecting minor damage, i.e., at an early stage.

We analyze the temperature effect by applying different tem-

perature environments to the structure under loading. The same

sensor configuration is utilized as in the noisy data scenario. For

training, data from the undamaged structure is measured at tem-

peratures between 5 °C and 30 °C with intervals of 5 °C. After training,

the model was evaluated at 10 °C and 13 °C for undamaged and

damaged cases. Figure 4e shows damage detection performance for

these configurations. Specifically, the autoencoder achieves similar

performance asMIAE for undamaged cases but fails to detect damages

at 10 and 13 °C. This demonstrates that incorporating mechanical

strain relations between the sensors into the autoencoder increases its

robustness to temperature variations.

LODA and Isolation Forest can obtain comparable recall scores

during damage detection evaluation. However, their accuracy is low

when evaluating undamaged samples,making these damage detection

results less reliable. Overall, MIAE outperforms the other baseline

methods. These numerical results provide comprehensive coverage

across various scenarios, enabling the model to distinguish actual

structural damage from effects caused by unknown temperature var-

iations, even if they are not included during training. At last, damage

localization is also performed for noisy data scenarios and tempera-

ture variations, with results similar to those shown in Fig. 3a. We omit

these results for brevity.

Experimental validation–a gusset plate
We evaluate MIDAS on a plate structure (Fig. 5a) to demonstrate its

feasibility. The experimented steel plate measures ∼45 cm× 36 cm.

Twenty-seven (27) strain sensors were attached to the plate surface

with a center-to-center gap of 6.5 cm. Random traffic-like loading is

applied to the intact plate structure for 3 h to generate enough data to

train MIAE. Then, we introduced damage to the plate. To demonstrate

the ability to differentiate between damage types, we sequentially

evaluated two typical types of damage—cracks followed by boundary

condition variations—applied on the plates during the experiment.

This approach allows us to illustrate the progression of damage. Fig-

ure 5a shows thefirst damage, a crackof size 4 cm×0.5 cm, introduced

in the middle right side of the plate. The second type of damage

(boundary condition variations) was subsequently introduced at the

lower boundary connection of the plate. The damage was introduced

by manually loosening the bolt connecting the plate to the loading

frame. The bolt was loosened continuously throughout the experi-

mental loading to mimic the progression of the boundary condition

damage. In both damage states, random traffic loading was applied to

the plate before and after introducing damage, and corresponding

strain response data were recorded from all sensors. Data from

damaged structures was evaluated similarly to the finite element

simulation. Details of the sensor placement and two damage locations

are shown in Fig. 5a.

MIAE

Autoencoder

SPIRIT

a

b

Intact Medium crack Very large crackLarge crack

Fig. 3 | Damage localization for a cracked gusset plate.We consider different

crack lengths: intact (0 cm), medium (2 cm), large (4 cm), and very-large (6 cm).

MIAE localizes cracks at an earlier damage stage than prior unsupervisedmethods.

a Damage score maps for different damage scenarios. A high damage score (peak

values in yellow) at one or more sensors near the crack indicates successful loca-

lization. MIAE can localize the crack earlier (at a small crack length) than SPIRIT and

autoencoder. b Damage localization accuracy from an extensive analysis of 37

different crack scenarios. The y-axis refers to the percentage of cases where

damage was successfully localized. Compared to autoencoder and SPIRIT, MIAE

has a higher localization accuracy across all crack lengths (e.g., 35% better locali-

zation for 2 cm long cracks), demonstrating its ability to localize cracks earlier than

the baseline approaches. Source data are provided as a Source Data file.
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Damagedetection and localization. When considering the significant

damagewe introduced, theperformanceofMIAE is comparable to that

of the autoencoder. However, MIAE can localize the damage more

accurately than the autoencoder. Figure 5b presents the crack locali-

zation scoremaps as we vary the number of sensors. Compared to the

standard autoencoder, the integrated mechanical knowledge sig-

nificantly improves the damage localization accuracy. When using all

available sensors, the scoremap exhibits amuch larger peak region on

both sides of the crack. This occurs because stress concentration pri-

marily occurs at the crack’s tips, and the sensors on both sides of the

tip sense the structural response variations. The autoencoder score

map exhibits a similar pattern, but the peak scores are much lower

(faint yellow) near the right side of the crack tip, resulting in very weak

localization. SPIRIT completely failed to localize the crack.

When using only four, instead of twenty-seven, sensors, MIAE had

the best localization performance, with a smaller distance between the

peak in the score map and the crack location than autoencoder and

SPIRIT. These results suggest that our proposed method is more sen-

sitive to minor damage, amplifying such discrepancies and improving

localization over a standard autoencoder.

Figure 5c shows the damage score map for the boundary condi-

tion variation in the first 2min of loading after manually loosening the

plate connections (i.e., introducing second damage). Only MIAE suc-

cessfully localized the damage at the bottom right corner of the plate.

This region corresponds to the actual location of the boundary varia-

tions we introduced. Autoencoder and SPIRIT exhibit worse localiza-

tion performance with late localization during damage progression.

Meanwhile, in the second row of Figure 5c, we demonstrate that

accurate localization can also be achieved with fewer sensors. Fig-

ure 5d shows the progression of damage localization across different

methods. Autoencoder and SPIRIT can only localize the damage after

20min of loading. This again demonstrates that MIAE exhibits higher

sensitivity, enabling early damage localization after 2.5min of loading.

More details of this evaluation can be found in Fig. 2 of the Supple-

mentary. Overall, our results indicate that MIAE achieves early detec-

tion and localization for different types of damage.

Damage identification. In addition to damage detection and locali-

zation,MIAE can alsodistinguish unseen types of damage based on the

compressed sensor data features μ and σ. We independently compute

Fig. 4 | Damage detection and localization under sensor and temperature

variations. aDamagedetectionperformanceas thenumberof sensors varies. Error

bands are derived from re-scaled standard deviations and represent the variability

in the performance. b Comparison of localization accuracy between MIAE and

autoencoder with four sensors for two different crack scenarios. MIAE's peak

damage score is closer to the true crack location in both cases. c Comparison of

damage localization accuracy with four sensors as crack length increases. MIAE

outperforms the baseline approaches.dDamage detection performancewith noisy

(0.5% additive Gaussian noise) sensor data. Error bars represent the standard

deviations across different cases. e Damage detection performance was evaluated

at two different temperatures. Source data are provided as a Source Data file.
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the difference of norms for μ and σ for each sensor without combining

them in the damage score (see “Method” section and equation (9) for

details). Figure 5e presents two distinct damage score maps derived

from μ and σ. We observe that μ, which represents the temporal

average of the strain responses, is more sensitive to boundary condi-

tion variations. This behavior is attributed to the fact that the loosen-

ing of structural connections reduces the structure’s stiffness,

resulting in an overall attenuation in strain magnitudes. On the other

hand, the standard deviation σ is more sensitive to the cracks induced

by stress concentrations. Sensors positioned near the crack tips

experience elevated strain during loading, leading to a larger deviation

from the baseline strain responses, i.e., increased standard deviation.

We show additional results on distinguishing different types of

damage in Supplementary Note 3.

Experimental validation–a beam-column structure
Beam columns are structural elements frequently encountered in

various engineering applications, such as building frames, bridges, and

industrial structures. The widespread use of beam-columns in struc-

tures highlights their importance in structural engineering and the

need for engineers to understand their behavior and design principles

thoroughly.

We consider a structure with multiple connected components.

Figure 6a illustrates our setup consisting of a column, beam, and other

components, with units in inches. The load is applied at 3/4 of the span

of the beam, 76.2 cm (30 inches) from the column face. Strain sensors

are strategically placed at the support, beam, and column flange.

Figure 6b shows a picture of our experimental setup in the lab and the

loading details.

After loading the undamaged structure (state D0), we introduced

different levels of damage in the form of variations in boundary con-

ditions (bolt loosening) during loading. The bolt near sensor four (S4)

is progressively loosened from an intact state of 80 lb ⋅ ft to around

60 lb ⋅ ft for three levels of damage (D1, D2, and D3).

Damagedetection. Time-series strain datawas recorded for the entire

experiment and compressed for model training and evaluation.

Figure 6c shows the detection accuracy for the intact structure. In the

undamaged stateD0,MIAE achieves the highest accuracy compared to

other baseline methods, indicating excellent learning of the unda-

maged reference state. When detecting damage, MIAE demonstrates

superior performance at the early stages of levels 1 and 2. At damage

level 3, almost all methods can detect damage. However, methods like

OCSVM and LODA achieve low accuracy when evaluating the
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Fig. 5 | Laboratory experiment on a steel plate structure. a Two types of damage

are introduced sequentially (a crack and boundary condition variation). The crack

is located in the middle of the plate, and the second damage was introduced by

loosening the bolt connections. Under loading, the connection of the plate loosens,

thus mimicking damage progression. b Crack localization results with 27 and

4 sensors, respectively. When using all 27 sensors, MIAE accurately delineates the

crack region with a high damage score (yellow region) around the crack tips, out-

performing the autoencoder. SPIRIT fails to localize the damage in both setups.

c Localization for bolt loosening damage under loading. MIAE correctly localizes

the damage at the bottom plate connection in the early loading stage (damage

progression). d Localization performance for boundary condition variation. Only

MIAE can localize the damage early. As the crack size increases, both the auto-

encoder and SPIRIT gradually succeed in localizing it. e Damage differentiation

through compressed sensor data μ and σ. While μ is more sensitive to boundary

condition changes, σ responds more to cracks in the structure. Source data are

provided as a Source Data file.
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undamaged case, making their damage detection results less reliable.

Overall, the results demonstrateMIAE’s ability todetectdamage earlier

than existing methods.

Damage localization. We compute the damage scores at all eight

sensors for different damage levels. Sensors on the beam and support

(S1–S4) exhibit relatively higher damage scores compared to the other

four sensors in the column, indicating damage nearby. We use only

these sensors to compute damage scoremaps and localize the damage

as they are in-plane with the beam, while the others are not. In Fig. 6d,

when the first level of damage (D1) occurs, MIAE has its peak damage

score between sensors 2 and 4, indicating potential damage. Still, it

does not accurately localize the damage near sensor 4. But at damage

states D2 and D3, MIAE accurately localizes the damage near sensor 4.

The baseline autoencoder only localizes the damage at D3, while

SPIRIT fails to localize any damage (results omitted for brevity). These

results demonstrate that MIAE enhances localization for low-severity

damage.

It is noteworthy that although sensors at the column are not

directly used in the localization, they greatly contribute to the

model training and establish the reference baseline behavior of the

structure. To illustrate this, we consider a configuration using only

four sensors located on the beam and the support (excluding the

sensors on the column). In Fig. 6e, MIAE can hardly localize

damage at the second damage level D2. And both MIAE and

autoencoder can localize the damage at D3. Compared to suc-

cessful localization at D2 when using eight sensors with MIAE, this

delayed localization using fewer sensors demonstrates that addi-

tional sensors on the other structural component greatly enhance

MIAE’s performance.

Discussion
This paper presentedMIDAS for automated detection and localization

of unforeseen damage, as well as the differentiation between different

types of damage. MIDAS leveraged sensors positioned at various

locations to gather time-series data from an intact structure, which

were compressed into features at each sensor and employed for

training a MIAE. The overall idea of MIDAS was to learn a reference

model of strain responses from an intact structure, which aids in

capturing anomalies indicative of structural damage. We demon-

strated the efficacy of MIDAS through both numerical and laboratory

experiments on two structures, namely, a gusset plate and a beam-

column structure.

A key component of MIDAS is the MIAE. It leveraged the rela-

tionships between sensors based on their mechanical strain responses

to enhance detection during early damage progression and enable

earlier damage localization than prior methods. MIAE is sample effi-

cient, requiring only a minimal amount of data samples for damage
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Fig. 6 | Laboratory experiment on beam-column structure. a The design speci-

fications. b The experimental setup, sensor placement, and loading details. c The

damage detection performance at different levels of damage. d Damage localiza-

tion using all eight sensors' data for training. Only four sensors on the beam and

support are used to generate the localizationmap. eDamage localization with only

four sensors on the support and beam for training and evaluation. Overall, MIAE

can detect and localize small damage, achieving the best performance among all

comparisons to the baselines. Source data are provided as a Source Data file.
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detection and localization. MIAE outperformed standard ML techni-

ques like One-Class SVM, Isolation Forest, and LODA in detecting

damage across different damage scenarios, achieving better accuracy,

precision, recall, F-score, and AUROC. Notably, the novel loss function

incorporating pairwise mechanical relations between the sensors

improved the localization rate of minor damages by up to 35% over a

standard autoencoder. In our laboratory experiment on a steel plate,

MIDAS could also distinguish between different types of damage

(boundary condition variations and cracks). Finally, the experiment on

a beam and column structure demonstrated the generalization ability

of MIDAS to complex structures with multiple components and dif-

ferent geometries.

The data compression technique used in this work has been pre-

viously developed by our research group to achieve low-cost field

deployable edge computing on ultra-low-powered wireless sensors.

The method has been validated in laboratory and field tests12,52–54. This

work’s application enhances and distinctly sets ourmethod apart from

existing autoencoder-based techniques that typically process raw

time-series signals directly. Incorporating data compression affords

robustness to sensor noise and enablesmore efficient data processing,

network training, and prediction, facilitating near-real-time damage

detection and localization. This is extremely important for advanced

wireless sensors that require efficient data storage and transmission.

Overall, this technology underpins the practicality of our approach in

real-world applications, contributing to an efficient and automated

SHM solution.

We demonstrated the utility of MIDAS as a SHM framework for

near-real-time detection and localization of structural damage. We

evaluated it across various numerical and laboratory experiments,

including gusset plate structures and a large-scale beam-column

structure involving multiple connected components. An exciting

direction of future work can focus on scaling MIDAS to even larger-

scale structures (e.g., entire bridge or building). This wouldnecessitate

optimizing sensor placement, using a heterogeneous suite of sensors,

and adapting the mechanics correlations for larger structures and

different types of sensors.

Methods
Finite element analysis (FEA)
The gusset plate is simulated using 3D elements (C3D8R) in ABAQUS

under clamped-clamped boundary conditions at the bottom edge of

the plate. The Poisson ratio and Young’s modulus are 0.32 and

200GPa, respectively. To simulate traffic loading, random loading

magnitudes are applied to the top left and top right edge in both −x

and −y directions. The loading magnitudes are periodic data gener-

ated by 100 combinations of Sine and Cosine functions. Each function

has a different combination of random phase, frequency, and peak

amplitude drawn from normal distributions (see details in Supple-

mentary Note 5).

To generate enough training data, the FEA of the undamaged

plate structure is repeated with different random loads for multiple

iterations. The FEA model uses a fixed timestep of 0.025s. In the case

of damaged structures, random cracks are introduced within the

plate geometry, varying in location, length (l), width (w), and angle

(α). We varied the crack width from 0.1 cm to 0.5 cm across different

cases, with an interval of 0.1 cm. And we introduced the crack at an

angle of 0, 30, 45, 60, and 90°. The mesh size is set to 0.2 cm for the

crack area and 1 cm for all other regions. The strain responses are

obtained by averaging the values across all elements within the

specified sensor regions. The strain data in the y direction are

recorded at every timestep, with an interval of 0.025s. To analyze the

temperature effect, the expansion coefficient of the structure is set

to 11 × 10−6 ∘C−1. The default initial temperature is set to 25 °C. The

training data is generated at different temperatures varying from 5 to

30 °C, with an interval of 5 °C.

Laboratory experiment setup
Young’s modulus of the steel plate is unknown for the laboratory

experiment of the gusset plate. The strain gauge type is 1-LY11-6/350

and is attached vertically tomeasure the strain in the vertical direction,

aligning with the vertically applied loading. The clamped-clamped

boundary conditions of the plate are considered due to their higher

controllability in an experimental setup compared to other types of

boundary conditions, such as pinned-pinned or pinned-clamped.

For the beam and column structure, the experimental setup is

intended to test the behavior of a beam-column connection with a

supporting prop under loading. A moment connection is established

between a W4 × 13 I-beam and a W4 × 13 column, both made of A992

grade steel. The beam, measuring 40 inches from the column face to

its end, is connected to the column using two L4 × 4 × 1/2 web cleats

made of A992 grade steel. The cleats are bolted to the beam flange and

column flange using two 1/2 inch diameter A325 bolts per cleat, with

bolt holes positioned 1 inch from each edge. The spacing between

bolts and the edge distance satisfies the minimum edge distance and

spacing requirements specified by the AISC manual. The column is

connected at the bottom to a circular plate of 36-inch diameter by 3/

16-inch fillet welds while it is supported by aW4 × 7.7 I-section prop at

the top by a 1/4-inch fillet weld. The base plate is anchored to the

foundation using four anchor bolts. The loading profile is similar to the

gusset plate experiment and controlledwith amaximumdisplacement

of 0.23 inches, corresponding to a maximum load of ∼2000 lbs.

We generated a continuous randomly simulated traffic effect

loading profile in both experiments with a time step of 0.1s.

Displacement-control testing was performed using an MTS loading

framemodel, applying the loading at the top and bottom fixtures. The

strain sensors were connected to a NI-9236 strain input module for

strain responsesmonitored during the loading stage, andwe collected

the raw strain data through LabVIEW. For data compression, we

selected seven threshold levels ranging from 30 to 175 με with an

increment of 24 με.

Data compression and dataset construction
In this study, it is assumed that N sensors have been affixed to the

structure of interest at N locations. During normal operation, the

structure experiences continuous loading forces of unknown magni-

tude. Each sensor Si continuously measures a strain signal εi over time

(where i = 1, 2, …, N).

The data reduction approach is mainly adopted from61,62 to solve

significant data problems typically generated from structural mon-

itoring sensors (see Fig. 7a). The approach can be summarized as fol-

lows: (i) predefining several strain thresholds based on the overall

strain events, (ii) calculating the cumulative times for a selected seg-

ment of strain-time responses for all levels of the threshold, (iii) fitting

the cumulative time data to the Gaussian equation (1) for data com-

pression, and (iv) obtaining the parameters for Gaussian cumulative

density function (CDF) through equation (1).

FGuassianðεÞ=
A

2
1� erf

ε� μ

σ
ffiffiffi

2
p

� �� �

ð1Þ

where A is the summation of all cumulative time events. μ and σ

represent the mean and standard deviation of the cumulative density

function, and erf denotes the Gauss error function. To determine the

thresholds in Fig. 7a, the mean strain value εmean is computed by

averaging the strain responses collected from all sensors in the

undamaged structure. Then, the seven threshold values are evenly

distributed between 0.5εmean and 3εmean. For each sensor, every 200

data points are compressed into one set of μ and σ (see Fig. 7b).

Next, the compressed sensor dataμ andσ (see right sideof Fig. 7b)

are utilized to construct the dataset in batches. We use a moving

window with length l = 12 and a stride of 2 to create one batch. For
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example, the first training sample is taken from the 1st to the 12th

segment, the second training sample is from the 3rd to the 14th seg-

ment, then from the 5th to the 16th segment. The constructed dataset

has a size of B × l × 2N representing the number of batches, time-series

data length, and the number of sensor parameters μ and σ,

respectively.

Mechanica-informed autoencoder network
Figure 7c illustrates the proposed MIAE architecture with six layers.

Specifically, the input and output have the same matrix size, with the

output intended to reconstruct the input values. The input layer size is

twice the number of sensors employed. For instance, in the case of our

numerical simulation, where data from all 45 sensors is used, the input

size is 90. In contrast, the size of the middle hidden layers is compacted

to 20. However, when using fewer sensors, such as only 4, the size of the

middle hidden layer is scaled up by a factor of 8; specifically, each of the

first three layers is scaled up by a factor of 2, and the last three layers are

scaled down by a factor of 2. This scaling adjustment is necessary

because reducing the size of themiddle hidden layers beyond this point

would not contribute further to model learning. The standard auto-

encoder has the same architecture as the MIAE for all comparisons. The

first part of the loss function is computed as the MSE.

LMSE =
1

n

X

ðy� xÞ2 ð2Þ

where n, x, and y denote the number of samples, the input, and the

output from the neural network, respectively.

Most importantly, compared to standard autoencoders, MIAE

utilizes mechanics-informed knowledge between sensors, leveraging a

“mechanics-featured pattern”—inherent in intact structures but absent

in damaged ones. This pattern is discerned by analyzing variations in

data across different sensors, allowing themodel to learn and recognize

deviations from the baseline more effectively when damage occurs.

Compared to autoencoder, the training reconstruction errors are

reduced, while the reconstruction errors on other data for structures

usually increased, improving MIAE’s sensitivity to subtle damage. The

mechanical characteristics can be incorporated into the neural net-

works by considering the sensors’mechanical responses using a weight

matrix W. Specifically, the matrix has a shape of N ×N, and the weight

elements are assigned based on corresponding sensor measurements

(the largest strain values). This assignment accounts for the correlation

of strain changes between two adjacent points in an undamaged

structure, effectively reflecting the mechanical features such as the

stress concentration effect at boundaries. When accounting for the

effect of temperature, the measurements from sensors proximate to

the center of the plate are scaled down to one-third before calculating

the weight matrix W (as per equation (5)), and the corresponding λ

value is reduced by half. These adjustments improve training.

Furthermore, it is essential to highlight that weights are assigned

based on corresponding sensor measurements rather than relying on

manual input or predefined assumptions about sensor importance. This

approach properly reflects the actual mechanical features of the struc-

ture, such as stress concentrations at boundaries, whereasmethods that

assign weights based on geometry cannot handle them. This capability

to utilize raw sensor data to automatically capture and leverage struc-

tural mechanics is a crucial aspect of our novel approach. As shown in

Fig. 7d, the mechanical loss is evaluated for every pair of sensors i and j.

The mechanics loss term LMechanics and the proposed loss function L

can be calculated using the following equations.

LMechanics =
X

N

i, j

W ijðΔi � ΔjÞ2 ð3Þ

Δi = k yik22� k xik22 ð4Þ

W ij =
maxðεiÞ=maxðεjÞ, if maxðεiÞ<maxðεjÞ
maxðεjÞ=maxðεiÞ, if maxðεiÞ≥maxðεjÞ

(

ð5Þ
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L=LMSE + γLMechanics ð6Þ

where Δi refers to the difference of norms of the input and output at

sensor i, and Δ have shapes of n × l × 2N. xi and yi represent the cor-

responding input and output of the neural network from sensor i. The

norm operation in equation (4) is computed along the temporal

dimension (2nddimension).Wdenotes theweightmatrix definedbased

on each sensor’s strain responses, with all element values less than or

equal to 1. It is worth noting thatW is calculated based on the original

strain responses. γ is the penalty coefficient for mechanics loss term

and is fine-tuned to 0.05 in this study. The proposedmodel, trained on

equation (6), enhances the characteristics of structural integrity and

sensitivity of model prediction. Data from the damaged structure will

not follow the original mechanical features from the intact structure,

resulting in poor reconstruction by the neural network and higher

reconstruction errors. This underlyingmechanism is further illustrated

in Supplementary Note 2.

Damage detection metric
After training, themodel utilizes the training reconstruction errors Γ̂ as

a reference. It compares them to the reconstruction errors Γ at test

time to identify any deviations in the samples’ distribution. Assuming

there are m samples from N sensors, the input, output, and recon-

struction errorwouldhavem ×N values. The reconstruction error Γ for

each data point is calculated as:

Γ
j
i = y j

i � x j
i

� �2
ð7Þ

where j = 1, 2, …, m and i = 1, 2, …, N.

To assess the damage detection performance, all samples Γ (size

of m ×N) are first categorized as either anomaly (positive) or normal

data (negative). This classification is accomplished by setting adaptive

thresholds based on false positive rates derived from training recon-

struction errors. Next, we define a ratioq to ascertainwhether a testing

sample originates from a damaged structure across all m samples.

Specifically, if more than q ∗N of the N sensors were classified as

anomalies, the sample is deemed to originate from a damaged struc-

ture. As a result, all m samples predict whether the structure is

damaged, providing the feasibility of calculating various metrics later

on. Due to limited testing data, SMOTEENN63,64 was employed to

handle class imbalance. Subsequently, sample predictions are com-

pared to the ground truth using binary classificationmetrics, including

accuracy, precision, recall, F1-score, and AUROC.

Damage localization metric
Damage can be accurately localized by comparing the obtained norm

error Δ from equation (4) across different sensors. The objective is to

summarize the damage condition at each sensor into a single scalar

value, and this computation is divided into two steps. First, Δ̂ calcu-

lated from the undamageddata andΔ calculated fromdamageddata is

compared with the reference, considering each sensor parameter μ or

σ. This intermediate-term is denoted T as shown in equation (8),

representing the relative change in reconstruction errors. Second, T

from two types of parameters (μ andσ) are integrated asa singlemetric

for conciseness. Therefore, the damage score p is introduced as a

damage estimation metric in equation (9).

T =

1
m

P

Δ� 1
n

P

Δ̂

	

	

	

	

	

	

1
n

P

k x k22
ð8Þ

p= λ
T

μ

maxð ^T μÞ
+ ð1� λÞ T

σ

maxð ^T σ Þ

 !

=2 ð9Þ

where in the first equation, 1
m

P

Δ estimates the mean value from allm

testing samples, 1
n

P

Δ̂ represents the mean value from all n training

samples, and the denominator 1
n

P

k x k calculates the average of the

corresponding norm. In the second equation, T μ and T
σ are vectors of

relative parameter errors from parameters μ and σ based on sensors,

respectively. T̂
μ
and T̂

σ
are the corresponding T̂ calculated from the

reference. λ is a coefficient that leverages the contribution from

parameters μ and σ to damage scorep. In thiswork, λ is set to 0.5 for all

numerical simulations and experimental work. Furthermore, for

damage differentiation, the evaluation for each sensor is performed

separately for μ and σ, as T
μ

maxðT̂ μÞ
and T

σ

maxðT̂ σ Þ
.

Theproposed estimation function caneffectivelydifferentiate the

undamaged and damaged regions based on the damage scores. Spe-

cifically, a damage score p less than 1 represents the baseline or the

undamaged case, while a higher score demonstrates damage around

the sensor region. To some extent, themagnitude of p can indicate the

damage severity at the corresponding sensor location. However, such

a pattern was not consistently observed when small damage occurred.

Furthermore, by incorporating the location information from all sen-

sors and the p scores, the analysis can establish score maps for more

precise structural damage localization and estimate the overall struc-

tural integrity. In Figs. 3–6, the maps are plotted using normalized p

values, where each p value is divided by the maximum value, resulting

in a colorbar range from 0 to 1. When using fewer sensors, the

weighted centroid is computed based on the obtained p values and the

corresponding sensor’s position.

SPIRIT uses incremental PCA to find correlations and hidden

variables that summarize the trend and signify pattern changes. The

projection coefficients of the first two hidden variables (i.e.,W1 andW2

of the PCA weight matrix W) are computed for both the training and

testing datasets. The damage scores p are calculated as the element-

wise Euclidean distance between the training data point (W train
i,1 ,

W train
i,2 ) and test data point (W test

i,1 , W test
i,2 ) where i = 1, 2, …, n. The cor-

responding norm error Δ for SPIRIT can be calculated as the element-

wise Euclidean distance using equation (10), while the damage score

will be computed as in equation (9) above.

Δ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðW train
i,1 �W test

i,1 Þ2 + ðW train
i,2 �W test

i,2 Þ2
q

ð10Þ

Data availability
The numerical simulation and experimental data supporting the findings

of this study are available for reference. The data is available at https://

github.com/human-analysis/midas-shm. A Source Data file for data

presented within the figures are provided with this paper (https://doi.

org/10.5281/zenodo.13341021). Source data are providedwith this paper.

Code availability
All the source codes to reproduce the results in this study are available

on GitHub at https://github.com/human-analysis/midas-shm(https://

doi.org/10.5281/zenodo.13341021).
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