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Abstract— Modern face recognition systems utilize deep neu-
ral networks to extract salient features from a face. These
features denote embeddings in latent space and are often stored
as templates in a face recognition system. These embeddings
are susceptible to data leakage and, in some cases, can even
be used to reconstruct the original face image. To prevent
compromising identities, template protection schemes are com-
monly employed. However, these schemes may still not prevent
the leakage of soft biometric information such as age, gender
and race. To alleviate this issue, we propose a novel technique
that combines Fully Homomorphic Encryption (FHE) with an
existing template protection scheme known as PolyProtect. We
show that the embeddings can be compressed and encrypted
using FHE and transformed into a secure PolyProtect template
using polynomial transformation, for additional protection. We
demonstrate the efficacy of the proposed approach through
extensive experiments on multiple datasets. Our proposed
approach ensures irreversibility and unlinkability, effectively
preventing the leakage of soft biometric attributes from face
embeddings without compromising recognition accuracy.

I. INTRODUCTION

Face recognition entails the extraction of features from

face images and comparing them to either validate a claimed

identity (“verification”) or determine an identity (“identifi-

cation”) [1]. Recent advancements in deep neural networks

and AI have resulted in the development of powerful face

recognition systems [2], [3], [4] that can be deployed in a

wide range of applications such as personalized services,

law enforcement, border security, and smartphone access

[5]. However, this development has also raised questions

about privacy accorded to subjects and the security of the

templates (such as embeddings) stored in a face recognition

application [6]. Even as ethical concerns attendant to the

technology are being rightfully discussed in public forums,

it is necessary for the technology itself, on the one hand,

and its users, on the other hand, to embrace measures that

can enhance privacy and security while mitigating potential

biases [7]. Otherwise, the technology runs the risk of being

overwhelmed by restrictive legislation [8], [9] that can stifle

the benefits of this technology in solving egregious crimes

[10].

To address some of the privacy challenges associated

with face embeddings stored as templates, we propose an

approach in this paper that employs a polynomial trans-

formation on homomorphically encrypted face embeddings.

* First two authors contributed equally to this work.

Using Fully Homomorphic Encryption (FHE) in our pro-

posed method ensures that the face recognition result is only

disclosed to authorized parties with the secret key for homo-

morphic encryption, and the face embeddings themselves are

secured through encryption during the recognition process.

We show through our experiments that using FHE also

prevents leakage of soft biometrics (e.g., age, gender/sex,

race/ethnicity) from face embeddings. (It is necessary to

point out that there is a difference between race and ethnicity,

as well as sex and gender. In this paper, however, we use

these terms interchangeably).

PolyProtect [11], a template protection scheme, trans-

forms face embeddings into more secure templates using

multivariate polynomials with user-specific parameters. Our

research demonstrates a symbiotic relationship between FHE

and PolyProtect in ensuring optimal security measures. The

synergy between these two techniques is essential, as each

contributes unique strengths that, when combined, establish

a robust security framework. According to the inversion

attack analysis conducted by PolyProtect [11], the risk of

reversibility is notably high (30 - 99%) when an attacker

possesses multiple (more than 4) templates of the same face.

Even with the compromise of a single template, there is

a 95% likelihood of reversibility when an overlap of 4

or greater is employed. However, PolyProtect introduces a

tradeoff between accuracy and security, wherein increasing

the overlap parameter enhances accuracy in face recognition

and analysis tasks but concurrently diminishes template

security. To address this challenge, we implement a strategy

of encrypting the face embeddings using FHE and then

applying the PolyProtect template with high overlap. This

proactive step ensures that even under the full disclosure

threat model, irreversibility, unlinkability and prevention of

soft biometrics leakage are ensured without compromising

identification performance.

Conversely, the integration of PolyProtect into our ap-

proach serves as a countermeasure against threats targeting

compromised FHE systems, such as secret key leaks and

passive attacks outlined in [12]. The identified risks pertain

to FHE systems engaged in machine learning computations,

such as mean and variance calculations. By combining both

FHE and PolyProtect techniques (Fig. 1), our approach

offers a more comprehensive and resilient privacy solution

compared to relying on either method in isolation.
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Fig. 1: An overview of our contribution in protecting face embeddings from leaking soft biometric attributes - Age, Gender,

Ethnicity (FHE - Fully Homomorphic Encryption).

II. THREAT MODEL

We use the term facial analytics to refer to the process of

deducing semantic information from a face image. This could

include sensitive information such as age, gender, ethnicity,

and health [13] – sometimes known as soft biometrics. The

possibility of deducing soft biometric cues from face images

or their embeddings using automated techniques is a source

of concern. These automated techniques can be machine

learning models such as SVMs or deep neural networks

(DNNs). For example, a face image or its embedding can

be “stolen” by hackers and various soft biometrics can be

derived from them thereby revealing sensitive information.

In our work, we presume that the face embedding is

provided in an encrypted form. Our goal is to ensure that

the encrypted embedding does not reveal any soft biometric

information to unauthorized users. Note that the threat re-

mains unchanged even if the parameters of the models used

for extracting soft biometric information (e.g., weights of a

DNN) are encrypted.

We consider the most challenging threat model according

to ISO/IEC 30316, which is the full disclosure model, where

the attacker possesses complete knowledge of the PolyProtect

method [11], including its algorithm, number of embedding

elements (m), user-specific parameters (e.g., C, overlap, and

E), and one or more PolyProtected templates corresponding

to a face embedding. In addition, we assume that the public

key used in FHE is available but not the private key. If

the embeddings are not encrypted, the hacker can infer soft

biometric information from the PolyProtect template as we

show in Table III.

III. FHE BASICS

Encryption is the process where plain-text data is en-

crypted into ciphertext using a secret key and a cryptographic

algorithm. Only authorized entities with a private key can

decrypt the ciphertext back to the plaintext. Encryption is

essential for protecting sensitive data from unauthorized

access or modification. Homomorphic Encryption (HE) is

a cryptographic system that permits certain computations to

be performed on encrypted data without requiring decryption

[14]. In this system, we have public (pk) and secret (sk)

keys, encryption (E) and decryption (D) mechanisms, and

plaintext values x and y. When x and y are encrypted as x′ =
E(x, pk) and y′ = E(y, pk), respectively, a cryptosystem is

considered homomorphic with respect to a chosen operator

(e.g., addition or multiplication), denoted as ◦, if we can find

another operator • such that x◦y = D(x′•y′, sk). This means

that we can conduct operations on encrypted data and obtain

the same result when decrypting using the private secret key.

Specifically, given ci = E(xi, pk), i = 1, 2, · · · ,K,

an FHE scheme allows the computation of c =
g(c1, c2, · · · , cK) such that D(c, sk) = f(x1, x2, · · · , xK)
for any arbitrary function f .

It is essential to note that there are three types of homo-

morphic encryption schemes [15]: (a) Partial Homomorphic

Encryption (PHE) permits addition or multiplication opera-

tions. (b) Somewhat Homomorphic Encryption (SHE) allows

limited computations on ciphertexts. (c) Fully Homomorphic

Encryption (FHE) enables computations on ciphertexts of

any depth and complexity.

Numerous FHE systems have been introduced, including

the BFV, BGV, and CKKS schemes [16]. The BFV and BGV

schemes enable vector operations involving integers, while

the CKKS scheme facilitates floating-point operations. These

schemes achieve Single Instruction Multiple Data (SIMD)

operations by bundling plaintext values into an array and

then encrypting them to get ciphertext. In this work we use

the HEAAN [17] library based on the CKKS scheme for

FHE computations.

IV. RELATED WORK

A notable body of literature explores privacy enhance-

ments to soft biometrics at both the image and embedding

(template) levels in face recognition. PFRNet [18] uses an

Autoencoder framework to disentangle identity from attribute



information to suppress gender information in face embed-

dings. Similarly, SensitiveNets [19] uses a privacy-preserving

neural network that suppresses soft biometrics attributes. The

approach adopts an adversarial regularizer, which incorpo-

rates a sensitive information removal function into the learn-

ing objective. The Multi Incremental Variable Elimination

(Multi-IVE) method [20] works by eliminating those feature

variables in embeddings that predict soft biometric attributes.

Increasing the number of eliminations was shown to decrease

the soft biometrics leakage but significantly affected the

identification performance. In [21], the authors introduce

an adversarial attack approach designed to protect gender

information in facial images. The method involves perturbing

the image to minimize the estimated mutual information

between the feature distribution acquired from a face recog-

nition network and the gender variable. This method reduces

gender leakage (prediction accuracy) by an average of 91%

to 80% across three datasets. Reversible Attribute Privacy

Preservation (RAPP) [22] uses a stream cipher to determine

the sensitive attributes that have to be concealed with a

user-defined password; it supports recovering the original

attributes. It also uses an attribute adversarial network to

generate perturbed images that conceal various attributes

while retaining the utility of face verification. However,

the identification performance is negatively impacted. The

authors work around this challenge by reducing the number

of features being concealed and the intensity of concealment.

PrivacyNet [23] is another technique to impart soft biometric

privacy to face images while preserving recognition capa-

bilities via image perturbation using a GAN-based Semi-

Adversarial Network (SAN). PrivacyNet also allows a person

to choose the specific facial attributes to be obfuscated while

allowing the other attributes to be extracted. One of the

drawbacks of this image perturbation technique is that it

sometimes does not generate realistic images and cannot

conceal soft biometric features from a human observer.

Although current approaches mitigate the leakage of soft

biometric attributes, they do not suppress it to the level of

a “random guess”. In our work, we show that through the

use of FHE, we can restrict this leakage in face embeddings

to a level that is equal to or lower than that of a random

guess. In [12], the authors show the susceptibility of privacy

enhancement techniques such as homomorphic encryption.

We address this susceptibility by employing a template

protection scheme in addition to homomorphic encryption.

Further, FHE encryption offers a stricter theoretical guarantee

than existing methods for the security of soft biometrics.

FHE has been used in prior work for securing face

recognition. Boddeti [24] proposes encrypting the face em-

beddings and performing face matching in the FHE domain.

Batching and dimensionality reduction techniques are also

explored to balance face-matching accuracy and computa-

tional complexity. In [25], the authors introduce an efficient

approach for searching encrypted probe images against a

large gallery, using fixed-length representations. In [26], the

authors proposed a time-efficient and space-efficient face

matching in the FHE domain for securing face templates.

Our approach stands out from previous works by integrating

a template protection scheme, a compression technique, and

FHE to enhance the security of face templates. Moreover,

we conducted thorough experiments to assess their efficacy

in mitigating the leakage of soft biometrics.

V. TEMPLATE PROTECTION

Amongst the many existing protection templates, we have

adopted PolyProtect [11] to showcase the benefits of our

work. Let V = [v1, v2, ..., vn] denote an n-dimensional real-

number face embedding. PolyProtect maps V to another real-

numer feature vector, P = [p1, p2, ..., pk] (where k < n). P
is the PolyProtected template of V . m (where m << n) con-

secutive elements from V are mapped to single elements in P
via a polynomial equation of coefficients, C = [c1, c2, ..., cm]
and exponents, E = [e1, e2, ..., em]. C and E are user-

defined, non-zero, and distinct for each user of the face

recognition system. The first m elements of V are mapped

to p1 as :

p1 = c1v
e1
1 + c2v

e2
2 + ...+ cmvemm (1)

Another important user-defined parameter is overlap,

which defines the number of common elements from V
used in successive values in P . When overlap = 0, the

elements of V in each set are unique. The minimum and

maximum values for overlap are 0 and m− 1, respectively.

The mapping for p2 for overlaps 0 and m− 1, respectively,

are as follows:

p2 = c1v
e1
m+1 + c2v

e2
m+2 + ...+ cmvemm+m (2)

p2 = c1v
e1
2 + c2v

e2
3 + ...+ cmvemm+1 (3)

The authors of PolyProtect [11] have also performed an

extensive survey on a number of existing Biometric Template

Protection (BTP) methodologies and evaluated them based

on recognition accuracy, irreversibility, and unlinkability

[27]. According to the survey, none of the existing BTP

methodologies before PolyProtect [11] satisfy all three cri-

teria - recognition accuracy, irreversibility, and unlinkability.

VI. ABLATION STUDY

A. Variation of user-defined parameters (C, m, overlap)

We conducted experiments with various user parameters

in PolyProtect to investigate their impact on the leakage of

soft biometrics. As overlap increased from 0 to 3, there

was a notable increase in age leakage, particularly for values

overlap > 0. However, gender and ethnicity showed consis-

tent levels of leakage across different values of overlap (Fig.

2(a)). As the overlap increases, the amount of embedding

information retained after the PolyProtect transformation

also increases, potentially resulting in a higher risk of soft

biometric leakage. In PolyProtect, the parameter m dictates

the number of terms in the polynomial. At m = 6, we

observed maximum leakage for age, whereas for gender and

ethnicity, maximum leakage occurred at m = 7. Conversely,

selecting m = 5 minimized leakage across all three soft

biometric attributes (Fig. 2(b)). Additionally, the parameter



Fig. 2: Ablation study with the PolyProtect parameters shows soft biometrics leakage in different settings. (a) Overlap. (b)

m - length of polynomial coefficients/exponents. (c) [-C, C] - range of polynomial coefficients.

C, which defines the range of values for the polynomial

coefficients [-C, C], was varied from 10 to 60 in our study.

The leakage of ethnicity remained relatively stable across all

tested values of C, while age exhibited an increase from C
= 10 to 20, and gender showed a slight decrease from C =

45 to 60 (Fig. 2(c)).

B. Summation of Ciphertext elements

Implementing PolyProtect, cosine similarity, and fully

connected layers in FHE requires summing up the elements

within a ciphertext. This is not straightforward as we cannot

access individual elements of a ciphertext. The three ap-

proaches to efficiently achieve the summation are described

below:

1) Naive Rotation: This is a brute-force method for

summation within a ciphertext where expensive ciphertext

rotations are performed N − 1 times and the running sum is

computed until all the elements are covered (Algorithm 1).

2) Discrete Fourier Transform: When the Discrete

Fourier Transform (DFT) of a signal is computed, the first

value of DFT or the DC component will give the sum of

the input signal values. We use this property to calculate the

DFT of the ciphertext and get the sum of its values.

3) Fold and Add: This is a more efficient version of

the naive rotation method described earlier, which can be

visualized as iteratively folding the array into half and adding

the corresponding folded parts log2 N−1 times as described

in algorithm 2. Fig. 3 shows that the Fold and Add method

was the fastest among the three with a significant speedup

than the naive rotation method, especially for large ciphertext

sizes.

C. Polynomial approximation of inverse square root

Since computing cosine similarity requires inverse square

root function, we use a polynomial approximation of the

inverse square root function in the encrypted domain owing

to the limitations of FHE in implementing non-linear func-

tions. We restrict the input to the range (0, 1] to achieve a

closer approximation. The performance of this approximation

Algorithm 1 Add Ciphertext Elements Through Left Rota-

tion n-1 times

function NAIVE ADD(Ciphertext c, long N )

Ciphertext c1← c
while N > 0 do

LeftRot(c1, 1) ▷ Left Rotates Ciphertext by 1

c← Add(c, c1) ▷ Adds two Ciphertexts

N ← N − 1
end while

return c
end function

Algorithm 2 Add Ciphertext Elements Through Left Rota-

tion log2 N times

function FOLD ADD(Ciphertext c, long N )

k ← ⌈log2 N⌉
i← k − 1
while i > 0 do

Ciphertext c1← LeftRot(c, 2i)
c← Add(c, c1)
i← i− 1

end while

return c
end function

is measured through the relative error of 2000 random points

in the range (0, 1]. We consider both 6-degree and 8-degree

polynomials as a tradeoff between computational depth and

accuracy, as in Fig. 4.

VII. PROPOSED APPROACH

The proposed methodology begins with the reception of

encrypted face templates from users. These templates are

generated through a pre-trained face recognition model and

encrypted locally at the user’s end using Fully Homomor-

phic Encryption (FHE), employing a private key exclusively

known to the user. Subsequently, a template protection algo-



TABLE I: Statistics of the CelebSet Dataset (80 Identities).

Gender Age Ethnicity

Males Females 0-22 23-40 41-59 60+ Hispanic White Black Asian

38,080 34,409 5,279 43,357 22,781 1,072 738 57,873 13,414 464
52.50% 47.50% 7.28% 59.82% 31.43% 1.47% 1.01% 79.85% 18.50% 0.64%
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Fig. 3: Execution time to compute summation of elements

within a ciphertext.

Fig. 4: Inverse square root function. (a) 6-degree polynomial

approximation and (b) 8-degree polynomial approximation

and their relative error over 2000 random points in the range

(0,1].

rithm such as PolyProtect is applied to augment the security

of the encrypted template, forming an additional layer of

protection. The resulting encrypted PolyProtect template can

be securely stored at the user’s end and utilized as needed

for tasks such as face identification or the extraction of

soft biometrics, including gender, age, and ethnicity. The

outcomes of these tasks are transmitted to the user in

encrypted form and can only be decrypted using the user’s

private key.

A. Dataset

We have performed our experiments on CelebSet [28] and

Balanced Faces in the Wild (BFW) [29]. The statistics of

these datasets have been detailed in Tables I, II. As the BFW

dataset lacks age annotations for its face images, we utilized

a pre-trained model trained on the CelebSet dataset to predict

the ages of the BFW images. These predicted ages were then

employed in our experiments.

B. Embedding Compression

It is commonly believed that compressing embeddings

can improve privacy leakage. We explore embedding com-

pression through Matryoshka Representation Learning

(MRL) [30] as a technique to improve privacy, in addition

to template protection and encryption. MRL is an innovative

approach that enhances representation learning by encoding

information at various granularities within a single embed-

ding. MRL achieves this by capturing details at different lev-

els of abstraction, enabling the model to adapt to downstream

tasks efficiently. The method focuses on learning coarse-

to-fine representations, ensuring that high-level, generalized

features are initially captured and progressively refined with

finer details. MRL stands out by delivering representations

that are comparable in accuracy and rich in information

when compared to independently trained low-dimensional

representations, making it a promising solution for efficient

and effective representation learning.

In our research, we leveraged MRL to compress face em-

beddings obtained from FaceNet/AdaFace, which are origi-

nally of 512-dimension, down to 64-dimension. As depicted

in Fig. 5, we noted a decrease in classification accuracies

when the compressed dimensions fell below 64. It is impor-

tant to note that, since HEAAN supports SIMD operations,

compression does not aid in reducing computational depth.

C. Face Identification

Given a vector of face embeddings of size n, and user-

defined parameters C, m, and overlap, we pad the embed-

dings vector such that it can be split into m small vectors Vi

(where m << n). Each m-sized vector is encrypted in FHE.

We apply the PolyProtect algorithm as described in [11] on

each Vi, resulting in vector Pi. Unlike in the PolyProtect

algorithm [11], we store every PolyProtect mapping as a

vector of m elements which are the same, resulting from

the sum obtained through Fold and Add (Algorithm 2). We

have employed the Cosine similarity as a metric to calculate



TABLE II: Statistics of the BFW Dataset (100 Identities).

Gender Predicted Age Ethnicity

Males Females 0-4 5-12 13-19 20-39 40-59 60+ Indian White Black Asian

10,000 10,000 0 50 16,326 3,612 12 0 5,000 5,000 5,000 5,000
50% 50% 0% 0.25% 81.63% 18.06% 0.06% 0% 25% 25% 25% 25%
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Fig. 5: Performance of Matryoksha Representation Learning

(MRL) in extracting features - Identity, Age, Gender, Eth-

nicity - from different compressed dimensions. The graph

is based on experiments performed using AdaFace on the

CelebSet dataset.

similarity scores in the 1 : N search for identification. Cosine

similarity in FHE is computed using the algorithm described

in algorithm 3.

Algorithm 3 Cosine Similarity between ciphertexts C1 and

C2 of size N in FHE

function COSINE DISTANCE(C1,C2, N )

C ←Mult(C1, C2)
C ← FOLD ADD(C,N)
D1← FOLD ADD(Mult(C1, C1), N)
D2← FOLD ADD(Mult(C2, C2), N)
D ←Mult(D1, D2)
C ← Normalization(C) ▷ Scales all values to the

range [0,1]

D ← Normalization(D)
D ← approxInverseSquareRoot(D)
C ←Mult(C,D)
return C

end function

D. Age, Gender and Ethnicity Prediction

We perform our experiments using various combinations

of embeddings, template protection, compression, and en-

cryption. The embeddings are extracted through FaceNet [31]

and AdaFace [32] models. Our experiments are primarily

aimed at determining the identification accuracy and soft

biometrics leakage for the described combinations to prove

the efficacy of our proposed solution. Our networks (Fig.

6) have been tuned from the lens of an attacker to achieve

maximum leakage of soft biometric features. For cases that

require training with encrypted data in the FHE domain,

we train an SVM classifier on the ASCII dump of the

ciphertexts.

Apart from a myriad of leakage metrics defined in [33] and

[34], we have chosen to define leakage through Suppression

Rate (SR) and Privacy Gain (PG) [35]. Privacy Gain is

defined as -

PG = (1−Rp)− (1−Ro) (4)

where, Ro and Rp represent the recognition performances on

the original data and the privacy-enhanced data, respectively.

A positive value of PG signifies enhanced data protection.

The ideal value for PG is 1.

Suppression Rate measures the difference attribute predic-

tion accuracy with and without privacy enhancement, Ap and

Ao, respectively

SR = (Ao −Ap)/Ao (5)

Fig. 6: Feed Forward Network used for classifying soft

biometrics.

VIII. RESULTS

As evident from Tables III, IV, V our proposed approach

prevents the leakage of soft biometrics from face embeddings

with minimal loss in identification accuracy (<2.5%), high

Privacy Gain and high Suppression Rate. We can observe

that our approach reduced the classification accuracies of

soft biometric attributes to the level of random chance across

the two datasets. We could also achieve an almost ideal

Privacy Gain and Suppression Rate in certain scenarios, but

we believe this could be because of the imbalanced nature of

our datasets. Our experiments showcase that a combination

of MRL, FHE, and PolyProtect in this order yields maximum

protection against soft biometric leakage (Fig. 7 and Fig. 8).

The consistent efficacy of our method across two different

embeddings (FaceNet and AdaFace) and datasets (CelebSet

and BFW) shows the ability of our method to generalize in



TABLE III: Face identification and soft biometric classification accuracy (MRL - Matryoksha Representation Learning;

FHE - Fully Homomorphic Encryption). Note that the proposed approach retains identification accuracy while successfully

reducing soft biometric classification accuracy.

Embeddings Dataset Template Protection Identification Accuracy Gender Accuracy Age Accuracy Ethnicity Accuracy

FaceNet CelebSet

None 99.42% 98.12% 87.68% 98.81%
PolyProtect 99.42% 97.35% 85.00% 98.06%

MRL 97.93% 98.00% 85.87% 97.38%
MRL + PolyProtect 97.00% 96.32% 87.32% 98.44%

MRL + FHE 97.83% 52.22% 6.12% 8.01%

MRL + PolyProtect + FHE 96.95% 52.22% 6.12% 8.03%

BFW

None 85.06% 95.25% 94.40% 91.97%
PolyProtect 85.04% 95.07% 93.97% 91.62%

MRL 84.42% 92.02% 93.98% 91.65%
MRL + PolyProtect 84.31% 90.00% 87.90% 87.70%

MRL + FHE 84.38% 49.98% 28.00% 24.01%
MRL + PolyProtect + FHE 84.28% 49.50% 27.82% 24.00%

AdaFace CelebSet

None 99.41% 96.93% 90.25% 96.31%
PolyProtect 99.38% 95.75% 90.18% 96.56%

MRL 97.95% 97.63% 85.50% 98.94%
MRL + PolyProtect 97.59% 96.82% 89.13% 98.25%

MRL + FHE 97.91% 52.22% 6.12% 8.02%
MRL + PolyProtect + FHE 97.55% 52.22% 6.11% 8.01%

BFW

None 88.55% 89.97% 85.02% 81.72%
PolyProtect 88.46% 84.07% 84.62% 74.62%

MRL 88.33% 87.55% 83.83% 76.43%
MRL + PolyProtect 88.29% 85.58% 83.66% 75.58%

MRL + FHE 88.23% 49.98% 27.97% 24.02%
MRL + PolyProtect + FHE 88.21% 49.50% 27.90% 24.00%

TABLE IV: Privacy Gain across different soft biometric attributes.

Embeddings Dataset Template Protection Identification Accuracy Gender Attribute Age Attribute Ethnicity Attribute

FaceNet CelebSet

PolyProtect 99.42% 0.72 2.68 0.75
MRL 97.93% 0.12 1.81 1.43

MRL + PolyProtect 97.00% 1.80 0.36 0.37
MRL + FHE 97.83% 45.90 81.56 90.80

MRL + PolyProtect + FHE 96.95% 45.90 81.56 90.78

BFW

PolyProtect 85.04% 0.18 0.43 0.35
MRL 84.42% 3.23 0.42 0.32

MRL + PolyProtect 84.31% 5.25 6.50 4.27
MRL + FHE 84.38% 45.27 66.40 67.96

MRL + PolyProtect + FHE 84.28% 45.75 66.58 67.97

AdaFace CelebSet

PolyProtect 99.38% 1.18 0.07 -0.25
MRL 97.95% -0.7 4.75 -2.63

MRL + PolyProtect 97.59% 0.11 1.12 -1.94
MRL + FHE 97.91% 44.71 84.13 88.29

MRL + PolyProtect + FHE 97.55% 44.71 84.14 88.30

BFW

PolyProtect 88.46% 5.90 0.40 7.10
MRL 88.33% 2.42 1.22 5.29

MRL + PolyProtect 88.29% 4.39 1.36 6.14
MRL + FHE 88.23% 39.99 57.05 57.70

MRL + PolyProtect + FHE 88.21% 40.47 57.12 57.72

different conditions. We also prove the ability of FHE to

work seamlessly with template protection schemes and em-

bedding compression techniques for preserving the privacy

of face templates.

Additionally, we find that utilizing a soft biometrics classi-

fier network trained on plaintext data allows for seamless in-

ference within the FHE domain, yielding the same predictive

performance as that in the unencrypted domain (as depicted

in Table III in ”None”). This underscores the feasibility of

conducting not only identification but also soft biometric

analysis in the secure FHE domain.

IX. CONCLUSION

In this paper, we propose to use FHE in combination

with template protection and compression to secure the face

template and prevent soft biometric leakage. We show that

soft biometric attributes from face embeddings can be strictly

protected while preserving identification accuracy. In our

approach, we compress the face embeddings using MRL

(Matryoksha Representation Learning), encrypt them, and

then apply PolyProtect as the template protection scheme.

The identification performance of the encrypted template

compared with the unencrypted version is unchanged. Since

FHE guarantees are based on strong theoretical principles,



TABLE V: Suppression Rate across different soft biometric attributes.

Embeddings Dataset Template Protection Identification Accuracy Gender Attribute Age Attribute Ethnicity Attribute

FaceNet CelebSet

PolyProtect 99.42% 0.0073 0.0306 0.0075
MRL 97.93% 0.0012 0.0206 0.0145

MRL + PolyProtect 97.00% 0.0183 0.0041 0.0037
MRL + FHE 97.83% 0.4678 0.9302 0.9189

MRL + PolyProtect + FHE 96.95% 0.4678 0.9302 0.9187

BFW

PolyProtect 85.04% 0.0019 0.0046 0.0038
MRL 84.42% 0.0339 0.0044 0.0035

MRL + PolyProtect 84.31% 0.0551 0.0689 0.0464
MRL + FHE 84.38% 0.4753 0.7034 0.7389

MRL + PolyProtect + FHE 84.28% 0.4803 0.7053 0.7390

AdaFace CelebSet

PolyProtect 99.38% 0.0122 0.0008 -0.0026
MRL 97.95% -0.0072 0.0526 -0.0273

MRL + PolyProtect 97.59% 0.0011 0.0124 -0.0201
MRL + FHE 97.91% 0.4613 0.9322 0.9167

MRL + PolyProtect + FHE 97.55% 0.4613 0.9323 0.9168

BFW

PolyProtect 88.46% 0.0656 0.40 0.0869
MRL 88.33% 0.0269 0.0143 0.0647

MRL + PolyProtect 88.29% 0.0488 0.0159 0.0751
MRL + FHE 88.23% 0.4444 0.6710 0.7061

MRL + PolyProtect + FHE 88.21% 0.4498 0.6718 0.7063
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Fig. 7: Privacy Gain of our proposed approach compared to baseline (PP) across different attributes - (a) Gender, (b) Age

and (c) Ethnicity - using Adaface (MRL - Matryoksha Representation Learning; FHE - Fully Homomorphic Encryption;

PP - PolyProtect).
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Fig. 8: Privacy Gain of our proposed approach compared to baseline (PP) across different attributes - (a) Gender, (b) Age

and (c) Ethnicity - using FaceNet (MRL - Matryoksha Representation Learning; FHE - Fully Homomorphic Encryption;

PP - PolyProtect).

privacy and security are ensured, and only authorized indi-

viduals with the secret key will be able to access the results

from the FHE computation.

This material is based upon work supported by the Center for

Identification Technology Research and the National Science
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