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Figure 1. CoLa-SDF merges the controllability of 3DMM-based approaches with the high-quality generative capability of implicit 3D

GANs, allowing independent control over shape, albedo, illumination, hairstyle, and background of the generated faces.

Abstract

Generating 3D faces and rendering them to images

has numerous practical applications in areas including

AR/VR, dataset generation, and avatar creation. In recent

years, there has been a significant surge in the develop-

ment of high-fidelity 3D face generation techniques such as

StyleSDF, which combine the benefits of 3D implicit neu-

ral representations with those of style-based 2D generative

adversarial networks (GANs). Although these implicit 3D

GAN approaches generate highly realistic faces using a 3D

representation, the properties of the generated faces can-

not easily be edited or controlled. Meanwhile, linear 3D

morphable models (3DMMs) and their nonlinear extensions

have also made significant strides in their expressive capac-

ity and quality, but they have yet to match the image qual-

ity achieved by GANs. This paper proposes a new method,

CoLa-SDF, which combines the controllability of nonlinear

3DMMs with the high fidelity of implicit 3D GANs. Inspired

by the impressive photorealism and expressive 3D represen-

tations of StyleSDF, our model uses a similar architecture

but enforces the latent space to match the interpretable and

physical parameters of the nonlinear 3D morphable model

MOST-GAN. We demonstrate high-fidelity image synthesis

and subsequent 3D manipulation with full control over the

disentangled latent parameters.

1. Introduction

Face image generation has a long history in the vision

and graphics communities. Regarding 3D face genera-

tion, one of the earliest methods was 3D morphable models

(3DMMs) [9]. Popular linear 3DMMs such as FLAME [21]

and the Basel Face Model [12, 17] are highly controllable

and allow disentangled editing of shape, expression, tex-

ture, pose, and illumination. However, as they are linear

models based on principal components analysis (PCA), the

faces synthesized by these models lack fine details in shape

and appearance. To address this, there has been a growth in

nonlinear 3D face reconstruction approaches [10, 11, 22].

These nonlinear approaches have significantly improved the

expressivity of 3DMM models but are still far behind the

image quality of generative adversarial networks (GANs).

One core limitation of 3DMMs is the strict correspondence

assumption. While 3DMMs simplify modeling, they also

limit the ability to model the hair, mouth, and other regions

whose motion may violate pointwise correspondence.

The striking photorealism of 2D style-based GANs [18–

20], as well as the ability of implicit neural representations

such as neural radiance fields (NeRFs) [24] and signed dis-

tance fields (SDFs) to learn detailed 3D object representa-

tions from 2D images, have led researchers to combine the

benefits of both models. The combined models [14, 26],

which we refer to in this paper as implicit 3D GANs, can be



trained in an unsupervised way to learn and synthesize the

3D structure and high-fidelity texture of faces. Essentially,

implicit 3D GANs learn to generate an implicit represen-

tation of a 3D scene that can be rendered using volumetric

rendering techniques [24]. Unlike both linear and nonlin-

ear 3DMMs, implicit 3D GANs can model highly complex

structures that do not follow the correspondence assumption

(such as hair). However, existing implicit 3D GANs rarely

support disentangled control of generation or 3D face edit-

ing. There are some exceptions that support partial disen-

tanglement [8, 16, 33], but they often lack photorealism.

The basic idea of our model is to combine the control-

lability of nonlinear 3DMMs with the photorealism of im-

plicit 3D GANs. Previous methods [8, 22, 37] have com-

bined the photorealism of 2D GANs with the controllability

of 3DMMs with good success, but they suffer from limi-

tations. Since both StyleRig [37] and DiscoFaceGAN [8]

generate 2D faces and rely on StyleGAN, their controlla-

bility is limited by the 3D disentanglement a 2D StyleGAN

can learn; e.g., the inherent 2D nature of StyleGAN ham-

pers its disentanglement of pose from other attributes.

Inspired by the excellent 3D shape and texture model-

ing capabilities of MOST-GAN [22], a nonlinear 3DMM,

and by the impressive photorealism and explicit 3D sur-

face modeling of StyleSDF [26], we incorporate both meth-

ods into our approach, CoLa-SDF. MOST-GAN’s rich tex-

ture modeling is supported by use of the StyleGAN2 [20]

architecture, but it is unable to model the hair and inner

mouth regions in full 3D as there is no pointwise corre-

spondence across subjects in those regions. By combining

the disentangled controllability of MOST-GAN [22] with

the ability of StyleSDF [26] to learn 3D generation from

2D images, we can retain the best features of both nonlin-

ear 3DMMs and implicit 3D GANs. By incorporating the

nonlinear 3DMM via loss functions only, we maintain the

photorealism provided by the StyleSDF architecture. The

control is enforced during training of the StyleSDF archi-

tecture via loss functions that enforce consistency between

a set of disentangled latent vectors mapped into MOST-

GAN’s parametric space (“3DMM Parameters” on the left

edge of Fig. 1a), and the parameters obtained by encoding

the rendered images using MOST-GAN’s encoder.

To summarize, in this paper we propose CoLa-SDF,

which combines a nonlinear 3DMM with an implicit 3D

GAN in order to get the best of both worlds. Our pro-

posed approach utilizes a differentiable nonlinear 3DMM

to supervise the training of an implicit 3D GAN in order to

learn disentangled representations for shape, texture, and il-

lumination. In addition, we employ face parsing (semantic

segmentation of face images) to further disentangle a la-

tent code for the hair and background from the latent repre-

sentation of the face. As a result, CoLa-SDF can generate

high-fidelity 3D faces, which can then be edited by chang-

ing separate latent codes for shape, texture, illumination,

pose, and hair and background, either independently or in

various combinations. Our main contributions include:

• We propose a new 3D GAN model for faces that uniquely

disentangles the latent code into 5 components—pose,

shape, albedo, illumination, and hair/background—

setting it apart from other controllable 3D GANs;

• The disentanglement is achieved through consistency

losses that use a face parser (for hair/background dis-

entanglement) and MOST-GAN encoders (for other at-

tributes’ disentanglement), coupled with a carefully de-

signed training routine featuring two sub-iterations;

• We achieve this disentanglement without using any

dataset that had controlled (disentangled) face capture

• We perform extensive quantitative and qualitative exper-

iments comparing our model’s performance versus other

controllable 3D GANs such as [8, 16, 33, 35] and show

the superiority of our approach in terms of image genera-

tion quality and attribute control.

2. Related Work

2.1. Implicit 3D GANs and Neural Representations

Implicit 3D models, unlike traditional meshes or point

clouds, utilize functions (typically implemented using neu-

ral networks) to represent 3D objects and scenes. Neural ra-

diance fields (NeRFs), pioneered by Mildenhall et al. [24],

query density and radiance at 3D locations through the net-

work, rendering scenes via volume rendering. NeuS [43]

employs signed distance fields (SDFs) to represent object

surfaces instead of density fields. While these methods

were not inherently generative, subsequent approaches sim-

ilar to neural rendering-based implicit 3D GANs [25, 28]

emerged. pi-GAN [5] introduces a novel architecture lever-

aging periodic activation functions and FiLM [30] to en-

hance view consistency and generation quality. Computa-

tional costs limit these methods’ ability to generate high-

resolution images, but EG3D [4] proposes a tri-planar

framework to boost the computational efficiency of implicit

3D GANs. Recent advancements such as StyleNeRF [14]

and StyleSDF [26] combine a low-resolution volume ren-

derer with a CNN-based super-resolution network. Though

they offer direct 3D viewpoint manipulation, they lack ex-

plicit control over generated objects’ shape and appearance.

2.2. Controllable 3D GANs

Several techniques aim to model controllable 3D GANs.

BANMo [46] employs neural blend skinning for signifi-

cant deformations. NeRF-Editing [48] uses ray-bending

to edit static NeRFs. StyleRig [37], PIE [36], and GAN-

Control [29] project image attributes into StyleGAN’s la-

tent space. CLIP-NeRF [42] edits low-resolution objects

based on text or exemplars. HeadNeRF [16] disentangled



the latent space of an implicit 3D GAN for faces by training

on data containing multiple images for each subject with

the same labeled variations in expression and illumination.

Disentangled3D [38] and FENeRF [33] train separate shape

deformation and appearance networks, but they do not dis-

entangle illumination and only generate low-resolution im-

ages. RigNeRF [1] and GNARF [2] learn a canonical-space

3D representation which is then deformed to the desired

shape and expression. CGOF [34], 3DFaceShop [35], and

Next-3D [32] utilize mesh-guidance to control the shape

and expression of generated faces. IDE-3D [31] utilizes

semantic-masks and 3D GAN inversion to edit generated

faces. As such, these methods either lack photorealism or

are restricted to controlling only a few attributes (e.g., shape

and expression, but not texture, illumination, or hairstyle).

2.3. Linear and Nonlinear 3DMMs

3D morphable models (3DMMs) of faces are parametric

3D models that enable explicit control over the semantic

attributes of the face such as shape, expression, and albedo.

Since the first linear 3DMM of human faces [3], these mod-

els have grown to include complex pose and expression

modalities [12, 17, 21]. While relatively simple and effec-

tive, these linear models often lack expressivity and detail.

Several nonlinear 3DMM approaches have since been pro-

posed that have improved the expressivity and photoreal-

ism of 3DMMs [9–11, 39–41, 45, 47]. Notably, MOST-

GAN [22] trained a nonlinear 3DMM to integrate the ex-

pressiveness of style-based GANs with the physical disen-

tanglement of 3DMMs, along with a 2D hair manipulation

network. In [13], a coarse mesh refinement approach is em-

ployed to learn subject-specific head avatars that model the

entire head including hair. However, compared to implicit

3D GANs, these models’ generation quality is not as good,

and they have limited modeling of hair and teeth since these

facial features lack pointwise correspondence across sub-

jects and are not part of the underlying 3DMM model.

3. Background

Our method builds upon StyleSDF [26] and MOST-

GAN [22], which we now introduce in more detail.

StyleSDF [26] consists of two components: a signed dis-

tance function (SDF)-based volume renderer and a 2D

styled generator. Given a latent code z ∼ N (0, I), the

volume renderer takes in a 3D query point x and a view-

ing direction v and maps them into an SDF value d(x, z),
a radiance c(x,v, z), and a feature vector f(x,v, z). A

low-resolution (64×64) image C and feature map F are

generated using volume rendering. Each pixel in C

and F is computed by querying points along the ray

r = o+ tp originating from the camera position o and

passing through the pixel location corresponding to p as fol-

lows: C(r) =
∫ tf

tn
T (t)σ(r(t))c(r(t),p)dt, where T (t) =

exp
(

−
∫ tf

tn
σ(r(s))ds

)

represents the visibility of each

point along the ray. The density field σ(x) is obtained from

the SDF d(x) according to σ(x) = 1
α

Sigmoid
(

−d(x)
α

)

,

where α is a learned parameter. The styled generator maps

the feature map F into a high-resolution image I condi-

tioned on the style code w = g(z). The volume renderer

and the styled generator are trained separately using losses

Lvolren and Lgen (detailed in the supplementary material).

MOST-GAN [22] is a nonlinear 3DMM that includes a set

of encoders Eα,Eτ ,Eγ ,Eθ, a shape decoder Gα, and an

albedo decoder Gτ . Given a face image, the encoders ex-

tract the shape parameters α, the albedo parameters τ , the

spherical harmonics illumination parameters γ [27, 49], and

a 3D pose θ. The decoders generate the full 3D shape S and

albedo map A, with Gα : α → S , Gτ : τ → A. Next,

a differentiable renderer Φ renders the reconstructed face

image Imost from the generated 3D model and lighting and

pose parameters: Imost = Φ(S,A,γ,θ). Further details are

in the supplementary material. In this work, we use the pre-

trained MOST-GAN weights provided by the authors.

4. CoLa-SDF

Overview Our proposed approach is based on building a

semantically disentangled latent space for an implicit 3D

GAN, such that each part of the latent code corresponds to

a different physical attribute. We achieve this by enforcing

a correspondence between the latent codes for these factors

(shape, albedo, and illumination) and the parameters of a

3DMM, which has built-in disentangled representations of

these parameters. Pose control can be easily handled us-

ing 3D volume rendering and the view-dependence prop-

erty of implicit 3D GANs [14, 26]. However, 3DMMs do

not facilitate disentanglement of hair and background, be-

cause these attributes are not represented well in 3DMM

models. To encourage part of the latent code to correspond

to hair and background, we introduce a photo-consistency

loss on the hair and background regions of the generated

images that encourages different faces generated using the

same hair and background code to have consistent hair and

background appearance.

Training the latent space of an implicit 3D GAN to dis-

entangle according to a 3DMM requires the 3DMM to be

differentiable and highly expressive, so for our model we

adopted the nonlinear 3DMM model MOST-GAN [22], as

it matches these requirements. For our implicit 3D GAN ar-

chitecture, we selected StyleSDF [26], because of its 1) high

rendering quality, and 2) explicit modeling of the object’s

3D shape in the form of a signed distance field (SDF). Since

our proposed modifications and enhancements to StyleSDF

enable disentangled control of physical attributes by modi-
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Figure 2. Overview. [Top, inside blue rectangle]: The SDF volume renderer generates the low-resolution SDF surface, image, and feature

map conditioned on the latent codes zα, zτ , zγ , zhairbg, and zrest, which the styled generator decodes into a high-resolution image. [Bottom,

inside orange rectangle]: To disentangle shape, albedo, and illumination, we enforce parametric consistency between the sampled latent

codes and the MOST-GAN encodings α, τ ,γ,θ. To disentangle hair/background, we alternately (1) resample face parameters zα, zτ , and

zγ and enforce image-based consistency on the hair and background; and (2) resample zhairbg and enforce consistency on the face regions.

fying disjoint segments of its latent code, we call our model

Controllable Latent StyleSDF (CoLa-SDF).

4.1. Architecture

Starting with StyleSDF [26] at the core, we make two im-

portant changes to successfully disentangle the latent code,

as shown in Fig. 2. First, we partition the 256-dimensional

latent code z into separate latent codes, each denoted as z

with a subscript indicating the attribute to which the code

will correspond: the face shape zα , albedo zτ , illumina-

tion zγ , and hair and background zhairbg . We also intro-

duce a final segment of the latent code, zrest , to which the

model is free to assign to any facial appearance factors

not explained by MOST-GAN [22]. Second, we modify

the training method for StyleSDF to encourage each latent

code to control only the desired attribute by incorporating

novel consistency loss functions. One set of consistency

loss functions enforces consistency between the latent codes

that generate a face and the parameters that MOST-GAN ex-

tracts from the generated face image. A second set of con-

sistency loss functions minimizes the impact that changes in

zhairbg can have on the face appearance, and it similarly min-

imizes the effect that the face-specific latent codes can have

on the hair and background appearance. Careful design of

both the latent code factorization and the consistency losses

during training are crucial to attain the desired disentangle-

ment. We now describe these in detail.

4.2. Latent Code Factorization

We partition the 256 dimensions of the latent code z

into disjoint subsets: 128 dimensions corresponding to the

MOST-GAN [22] attributes, further partitioned into zα, zτ ,

and zγ ; 64 dimensions zhairbg corresponding to hair and

background appearance, and 64 dimensions zrest to account

for any remaining details in and around the face. To deter-

mine the dimensionality to allot to each of the MOST-GAN

factors zα, zτ , and zγ , we perform eigen-decomposition

over the corresponding data covariance matrices Σα, Στ ,

and Σγ , respectively, that we obtain by encoding images

in the FFHQ [19] dataset to the MOST-GAN [22] shape

α, albedo τ , and illumination γ parameters using the pre-

trained MOST-GAN encoders. Based on this analysis, we

chose a dimensionality of dα = 37 for zα and dτ = 64 for

zτ , which accounted for well over 95% of the variance in

their respective distributions. In order to enable full explicit

control over the 27 spherical harmonics lighting parameters

used in MOST-GAN, we chose dγ = 27 for zγ . Since we

desire zω ∼ N (0, I) for ω ∈ (α, τ, γ), we use Principal

Components Analysis (PCA) to create a mapping between

the parameter encoding of MOST-GAN [22] and the corre-

sponding latent codes in our model:

ωsample = U ′

ωΛ
′

ωzω + µω, (1)

where U ′

ω and Λ′

ω are the top dω eigenvectors and eigen-

values of Σω , and µω is the data mean.

4.3. Training

StyleSDF Losses: As in [26], we train the model in two

stages. In the first stage, we train the volume renderer, then

we freeze its weights in the second stage and train the 2D

styled generator. In addition to the original StyleSDF losses

(described below), in both stages we introduce new consis-

tency losses that we will describe in Section 4.3.1.

In stage 1, we train the volume renderer using loss Lvol



consisting of non-saturating GAN loss with R1 regulariza-

tion [23] Ladv, pose alignment loss Lview, eikonal loss Leik,

and minimal surface loss Lsurf, as defined in [26]. In stage 2,

we train the styled 2D generator using loss Lgen consisting

of a path regularization loss Lpath along with Ladv:

Lvol = Ladv + λviewLview + λeikLeik + λsurfLsurf, (2)

Lgen = Ladv + λpathLpath, (3)

where λview = 15, λeik = 1, λsurf = 1 and λpath = 2.

4.3.1 Disentanglement-Enforcing Consistency Losses

We enforce disentanglement by introducing the MOST-

GAN and hair/background consistency losses in both stages

of training, in addition to the StyleSDF losses (3). In stage

1, our new losses are applied to the low-resolution images;

in stage 2, they are applied to the high-resolution images.

We enforce consistency of the rendered image with re-

spect to the sampled MOST-GAN [22] parameters using the

MOST-GAN consistency loss Lmost:

Lmost = λαLα + λτLτ + λγLγ , (4)

where Lα = ||Eα(I) − αsample||
2
2 enforces that MOST-

GAN’s shape encoding of rendered image Eα(I) is the

same as the sampled shape parameters αsample obtained us-

ing Eq. 1. Similarly, we define the albedo consistency

loss Lτ and the illumination consistency loss Lγ . We set

λα = 3000, λτ = 100, and λγ = 60.

Existing 3DMM-based approaches do not model hair

and background. Hence, to disentangle hair/background

from other physical attributes, we adopt a novel approach

that restricts the hair/background code zhairbg to only model

the hair and background. Specifically, we perform a second

sub-iteration of the generator with latent code resampling,

where, during even iterations, we re-sample zα, zτ and zγ ,

and enforce hair/background consistency using Lhairbg. In

the odd iterations, we re-sample zhairbg and enforce face

consistency using Lface. Both Lhairbg and Lface are composed

of photometric and perceptual components as follows:

Lhairbg = Lphoto(Is1, Is2,Mh) + Lvgg(Is1, Is2,Mh), (5)

Lface = Lphoto(Is1, Is2,Mf ) + Lvgg(Is1, Is2,Mf ), (6)

where Is1 and Is2 are the images rendered in sub-iterations

1 and 2, respectively. Here, Mh = Mhairbg,s1 ∪ Mhairbg,s2

is the union of the hair masks from the two sub-iterations,

and Mf = Mface,s1 ∪ Mface,s2 is the union of the face

masks from the two sub-iterations, where we have used a

pre-trained face parser [6] to segment the rendered face im-

ages into a face mask, and a hair and background mask. We

define the masked photometric loss as Lphoto(x1,x2,m) =
||(x1 − x2) ⊙ m||1, where ⊙ is the element-wise product

operator. Similarly, we define the masked perceptual loss as

Lvgg(x1,x2,m) = ||ϕ(x1 ⊙m)− ϕ(x2 ⊙m)||22.

Thus, the overall loss for stage 1, the volume renderer

training, is given by:

Lcola
vol = Lvol + Lmost + λhairbgLhairbg + λfaceLface. (7)

Similarly, the overall loss for stage 2, the training of the 2D

styled generator, is given by:

Lcola
gen = Lgen + Lmost + λhairbgLhairbg + λfaceLface. (8)

We set λhairbg=5 in even iterations but =0 in odd iterations,

and λface = 5 in odd iterations but =0 in even iterations, for

both Eqs. (7) and (8).

Initialization of Each Stage: To obtain meaningful MOST-

GAN encodings and face parsing, we need the generated

images to look like faces. Hence, we initialize each stage

by training with only StyleSDF based losses (no consis-

tency losses) for up to 5000 iterations, following which

Lmost,Lhairbg and Lface are introduced. Failing to do so may

result in longer training time and poor convergence.

5. Experiments

We train our model on the FFHQ dataset [19], which con-

sists of 70,000 high-resolution images of portrait faces of

varying age, ethnicity, and image conditions. We evalu-

ate our model in terms of both its 3D face generation and

attribute disentanglement capabilities versus other control-

lable 3D GANs [2, 8, 16, 33–35]. To evaluate the gen-

eration quality and diversity, we compute the Fréchet In-

ception Distance (FID) [15] for each method. To evaluate

attribute control quantitatively, we evaluate the Disentan-

glement Score (DS) as described in [8] and study the ef-

fect of changing various attributes on face identity. Qual-

itatively, we demonstrate our model’s capability to disen-

tangle the latent space for shape, albedo, illumination, and

hair/background.

5.1. Face Generation and Multiview Consistency

CoLa-SDF generates high-fidelity 3D faces which can be

rendered into photorealistic and view-consistent faces up to

at least ±0.45 radians azimuth and ±0.225 radians eleva-

tion (see Fig. 3). To demonstrate the quality of the underly-

ing 3D surface, we also show the corresponding marching

cubes mesh obtained from the signed distance field. Fur-

ther, we map the shape code zα to the MOST-GAN pa-

rameter α using Eq. (1) and generate the corresponding

MOST-GAN mesh using its shape decoder S = Gα(α).
As shown in Fig. 3, the MOST-GAN meshes correspond

well with both the images and SDF surfaces generated by

CoLa-SDF. This shows that CoLa-SDF has learned a good

correspondence with MOST-GAN in addition to learning a

high-quality underlying 3D representation.

To quantitatively evaluate the face generation capability

of various approaches, we compute FID metrics [15] at a

resolution of 256×256 (see Tab. 1). One can observe that

our method reports the second best FID among other con-
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Table 1. Quantitative evaluation of 3D GAN approaches based on FID and Disentanglement Scores (DS) / Controllability (✓). Best results

are marked in bold, while second best is marked in red.

Method
3D Disentanglement Score (↑) / Controllability (✓)

FID (↓)
Representation Iden Expr Alb Illu Pose Hair/Bg

GAN-Control [29] 3DMM 7.07 7.51 9.33 83.6

DiscoFaceGAN [8] 3DMM 5.97 15.70 ✓ 5.23 77.5

StyleRig [37] 3DMM 1.64 13.03 2.01 56.7

HeadNeRF [16] Volume 6.39 5.99 ✓ ✓ 10.26 159.6

FENeRF [33] Volume ✓ ✓ ✓ 150.1

PIE [36] Volume 1.66 15.24 2.65 59.6

CGOF [34] Volume 21.72 27.47 22.82 31.8

3DFaceShop [35] Triplane ✓ ✓ ✓ ✓ 24.1

GNARF [2] Triplane ✓ ✓ ✓ 17.9

CoLa-SDF (Ours) Volume 28.15 23.60 20.72 16.72 ✓ 19.4

trollable implicit 3D GANs. Both FENeRF [33] and Head-

NeRF [16] only generate the face area and not background,

as can be seen in Figs. 5f and 5j, which could partially ex-

plain their poor FIDs.

5.2. Disentanglement of the Latent Space

We evaluate the disentaglement capability of 3D GANs in

terms of Attribute Disentanglement Score (DS) [8]. We re-

port the disentanglement scores of our method and other

approaches in Tab. 1. For some approaches, the DS is not

available. In those cases, we use a ✓to denote which at-

tributes that method can disentangle. CoLa-SDF’s disentan-

glement scores are the highest for shape, albedo and illumi-

nation, and second highest for pose. In addition, our method

is the only one that disentangles hair and background. In

the following paragraphs, we further qualititatively evalu-

ate CoLa-SDF’s latent space disentanglement in terms of

shape, albedo, illumination, and hair/background.

Shape, Albedo, Lighting, and Hairstyle Manipulation:

To demonstrate the disentanglement capability of our

model, we manipulate the shape, albedo, lighting, and hair

and background of generated faces and show their varia-

tions (see Fig. 1). To alter the attributes of a face image

generated using some latent code z, we independently re-

sample one or more of zα , zτ , zγ and zhairbg from the latent

space. Subsequently, we replace the original values in the

chosen segments of z with the newly sampled values, and

generate a modified image. Changing the shape code allows

us to explore various expression and structural modalities in

faces. Altering the albedo code results in changes to prop-

erties such as lip color, skin tone, facial hair, and eyebrow

density, while leaving the face shape virtually unchanged.

Similarly, varying the illumination and hair/background la-

tent codes only affect those factors, while maintaining the

face’s shape and albedo.

Illumination Editing using Spherical Harmonics: Since

MOST-GAN’s illumination code is based on the spherical

harmonics coefficients [27], we can perform controlled ma-

nipulation of illumination. We can directly configure the

values of these coefficients and use Eq. (1) to map these

values into the space of zγ . We traverse through the first

two spherical harmonics bases for each channel and show

the illumination variations in Fig. 4a. Traversing through

the first basis results in global illumination change, while

traversing through the second basis results in the illumina-

tion direction changing from right to left. Notice that as the

magnitude and direction of light changes, it affects not only

the face but also the hair and background. This is in con-

trast to 3DMM-based approaches, which apply illumination

only to the face region. This makes illumination editing us-

ing CoLa-SDF more natural than using MOST-GAN.

5.2.1 Attribute Transfer

To further demonstrate the attribute disentanglement of our

method, we transfer attributes such as shape, albedo, light-

ing, and hair and background from a source image (left col-

umn) to a target image (top row), as illustrated in Fig. 5.

Illumination Transfer (Fig. 4b): CoLa-SDF can transfer



(a) Illumination editing using spherical harmonics. (b) Illumination transfer.

Figure 4. CoLa-SDF disentangles illumination and maps it to the spherical harmonics space [27], enabling us to edit and transfer illumi-

nation. (a) For three randomly generated faces, we alter the lighting by directly modifying the spherical harmonics coefficients. Varying

the first coefficient (left) controls the level of global (ambient) illumination, while the second coefficient (right) controls the illumination’s

horizontal directionality. (b) Illumination transfer from source to target.

the tone, hue, brightness, and direction of the illumination

across the image, including illumination of the hair and

background. This includes some of the rare illumination

conditions in the training dataset like rows 2 and 3. On

the other hand, 3DFaceShop [35] can be ineffective in il-

lumination transfer (see Fig. 5i, where illumination is not

effectively transferred from the source image to the desti-

nation). In DiscoFaceGAN [8], editing the illumination can

incorrectly alter the background and clothing (see Fig. 5e).

Shape Transfer (Fig. 5a): Our method can transfer ex-

treme identity- and expression-related shape variations from

the source to the target, while keeping other physical at-

tributes intact. We show transfer of face attributes including

face width and height, shape of nose, jawline, as well as

expression changes. In contrast, 3DFaceShop [35] hardly

transfers any identity or expression from the source to the

target, as shown in Figs. 5g and 5h (see columns/rows

boxed in red). In FENeRF [33], shape transfer also

causes unintentional transfer of some appearance informa-

tion, such as face texture and hair texture—the identity

matches the source image much more closely than the target

face, which would not be the case with shape-only transfer.

Albedo Transfer (Fig. 5b): As reported in Tab. 1, our

method is one of the only methods that can transfer albedo,

including attributes such as skin tone, thickness of eye-

brows, and lip color. Interestingly, our model can also

transfer eyeglasses (row 4), which are external to the face

and hence not accounted for by any 3DMM model. In

our trained model, we were surprised to observe that hair

color is somewhat affected by the albedo code as well as

the hair/background code.

Hair and Background Transfer (Fig. 5c): Notice that

transferring the hair and background does not change the

identity or other attributes of the face. In this figure, we

again observe that while the hair/background code deter-

mines the hair geometry/hairstyle, its color is also partly

Table 2. Identity consistency between pairs of faces generated by

CoLa-SDF that differ only in their pose, illumination, hair/bg, or

shape and/or albedo latents. For each attribute, we report % of

pairs with < 70◦ distance, as measured by ArcFace [7]. CoLa-

SDF retains facial identity when changing non-identity-related at-

tributes (columns 1–3), but changes identity otherwise.

Pose Illu Hair/Bg Shape Albedo Shape + Albedo

97.7 99.7 98.2 75.2 65.7 4.7

controlled by the albedo code.

Additional Observations: HeadNeRF [16] can disentan-

gle identity, expression, albedo, and illumination well, but it

has poor photorealism (see Fig. 5f). In DiscoFaceGAN [8],

modifying the pose can unintentionally add artifacts such

as glasses and expression changes (see Fig. 5d). In con-

trast, CoLa-SDF can simultaneously control pose and trans-

fer other attributes as shown in the supplementary.

5.2.2 Identity Consistency across Unrelated Attributes

We further evaluate the disentanglement of CoLa-SDF by

studying the effect on the identity of the generated face

when we change identity-related attributes such as shape

and albedo versus non-identity-related attributes such as

pose, illumination, and hair/background. We randomly gen-

erated 1000 faces from our model and edited their view, il-

lumination, hair/background, shape, and albedo by resam-

pling the corresponding latent codes. We extract face iden-

tity features using ArcFace [7], and measure the identity

match between the original and edited faces. Based on the

analysis in [7], we set 70◦ as the threshold for a reason-

able match. The results, in Tab. 2, show that as desired,

changes in viewpoint, illumination, and hair/background

have minimal impact on the generated face’s identity. In

contrast, changing shape and albedo individually cause par-

tial but not complete identity alterations (this corresponds

well with human perception of identity changes in Figs. 5a

and 5b), while simultaneously changing both shape and



(a) CoLa-SDF Shape transfer. (b) CoLa-SDF Albedo transfer. (c) CoLa-SDF Hair/background transfer.

(d) DiscoFaceGAN [8] pose variations.

(e) DiscoFaceGAN [8] lighting variations.

(f) HeadNeRF [16] generations.

(g) 3DFaceShop [35] identity transfer (h) 3DFaceShop [35] expression transfer (i) 3DFaceShop [35] lighting transfer (j) FENeRF [33] shape transfer.

Figure 5. Qualitative comparison of face generation and attribute disentanglement by various controllable 3D GANs. Attribute transfer

results from 3DFaceShop [35] (g)–(i) show lack of disentanglement, as highlighted by red boxes. (j) Shape transfer in FENeRF [33]

changes the target almost completely, instead of just transferring the facial structure (poor disentanglement). DiscoFaceGAN [8] (d) adds

artifacts such as glasses and expression changes when rendering from different viewpoints, and it also (e) changes background and clothes

when editing lighting. (f) HeadNeRF [16] does not generate photorealistic faces. On the other hand, CoLa-SDF effectively transfers the

desired attribute while leaving the other facial attributes intact (a)-(c). Please zoom in for details.

Resample zhairbg

Figure 6. Spurious artifacts during hairstyle editing.

albedo codes results in a clear change of identity. This

demonstrates that our method has successfully disentan-

gled the identity-related attributes of the face from its non-

identity-related attributes.

6. Discussion

Limitations: CoLa-SDF may exhibit some artifacts in

hair/background editing (see Fig. 6). This might stem from

the model’s challenge in discerning between hair and other

headwear, leading to blending between them. Additionally,

as one may observe in Figs. 5b and 5c, although CoLa-SDF

accurately captures hair geometry, hair color may be influ-

enced by a mix of albedo and hair/background codes, likely

due to dataset correlations. One potential remedy could in-

volve incorporating an explicit 3D hair model during train-

ing [44, 50]. Furthermore, as MOST-GAN’s shape pa-

rameter governs both identity- and expression-related shape

changes, our method lacks disentanglement of these factors.

One approach could be to replace the MOST-GAN encoder

with a feature encoder designed for this disentanglement.

Ethics discussion: CoLa-SDF carries the potential for mis-

use in fabricating fake content. Our work is intended for

research purposes, and we strongly denounce any improper

use of our work to disseminate misinformation, harm repu-

tations, or violate rights.

Conclusion: We propose a controllable 3D GAN, dubbed

CoLa-SDF, that combines the disentangled controllability

of nonlinear 3DMM approaches with the high fidelity of im-

plicit 3D GANs for generating 3D faces and rendering them

to images. Building upon the architecture of StyleSDF, we

enforce the latent space to match the physical parameters of

the nonlinear 3D morphable model MOST-GAN by encour-

aging the latent parameters to match a statistical decomposi-

tion of the MOST-GAN parameters during model training.

In addition, we disentangle the control of hair and back-

ground using novel consistency losses applied over multiple

sub-iterations of training. We demonstrate high-fidelity face

synthesis and subsequent 3D manipulation with full control

over the disentangled latent parameters. Our model presents

a promising solution for generating high-quality 3D faces

with controllable properties, which has practical applica-

tions in many areas including AR/VR, dataset synthesis and

augmentation, media, and avatar creation.
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