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Abstract—The principle of biometric fusion, which entails com-
bining multiple biometric matchers, is often used to (a) improve
recognition accuracy and (b) increase the security of biometric
systems. However, fusion can expose information generated by
individual biometric matchers that an adversary can exploit.
This paper explores the possibility of performing score-level and
decision-level fusion by utilizing fully homomorphic encryption
(FHE) for enhanced security and privacy. In the context of
decision-level and score-level fusion, we appropriate a comparison
algorithm that can operate on fully homomorphically encrypted
inputs. Furthermore, for score-level fusion, we perform score
normalization in the encrypted domain, thereby enhancing the
privacy and security of the score data. Experiments on the NIST
BSSR1 dataset suggest that FHE can provide a viable solution for
securing biometric scores and decision data while retaining their
utility in fusion. The contributions of this paper are as follows:
(a) leveraging and implementing FHE-compatible operations in
a biometric identification framework; and (b) evaluating the
performance of such a framework on a real-world dataset.

I. INTRODUCTION

Biometric systems use a person’s physical or behavioral
characteristics, such as fingerprints, face, and iris, to establish
their identity. Unimodal biometric systems, which rely on
a single biometric trait, have several limitations. For one,
such systems can be more easily compromised. For instance,
fingerprint systems can be tricked using fake or lifted fin-
gerprints, face systems can be fooled using a high-quality
facial photograph or mask, and iris systems can be bypassed
using textured contact lenses. Further, a single biometric
trait may not offer the desired recognition accuracy in some
large-scale applications [25]. In this context, using multi-
biometric systems has gained traction [27], [28]. Biometric
fusion combines multiple biometric modalities (e.g., face and
gait or fingerprint and iris) to enhance the accuracy and
reliability of biometric systems. Fusion can be accomplished at
different levels, such as feature-level, score-level, or decision-
level (other levels include data-level and rank-level). Feature-
level fusion combines the features of different modalities to
create a new feature set; score-level fusion combines the
comparison scores produced by different matchers/modalities
in order to render the final decision; and decision-level fusion
combines the output of the decision by individual modalities
to generate the final decision. Individual decisions in identity
verification systems typically take on a binary form indicating
a match or a non-match.

In addition to securing features, securing biometric scores
is equally important. Biometric scores represent the degree of
similarity or dissimilarity between the biometric samples of an
individual and the enrolled template in a biometric database.
If biometric scores are not securely stored and transmitted,
they can be vulnerable to attacks, such as spoofing [24],
replay attacks, or injection attacks [30]. Spoofing involves
presenting fake or altered biometric samples to the biometric
system, while a replay attack involves capturing and replaying
legitimate biometric samples to bypass the authentication
process. If these attacks are successful, they can compromise
the security and privacy of individuals and organizations by
allowing unauthorized access to sensitive information and
resources. Therefore, it is crucial to secure biometric scores
by using strong encryption, secure transmission protocols,
and secure storage techniques to prevent unauthorized access,
modification, or theft of biometric data.

Fig. 1. A cloud service scenario with the need for encrypted processing and
the associated threat model.

With cloud services being a popular method for biomet-
rics deployment, arriving at a final biometric authentication
decision is critical. In such a scenario, one can imagine three
parties being involved, as shown in Figure 1. First, the query is
generated by the application interface, which sends data to the
biometric service providers (e.g., biometric matchers). Next,
we add the fusion layer service that processes the output of the
biometric service providers and sends the results back to the
application interface. The comparison scores and individual
decisions rendered by each biometric service provider can
reveal the final decision before it is made. Hence, it is
necessary to encrypt the decisions and scores the biometric



service providers produce. The final recommendation to the
application interface should be made after the fusion engine
fuses the intermediate scores or decisions in their encrypted
form. The only party to be able to view the final results should
be the application interface with the private key.

We propose encrypted score/decision-level fusion for bio-
metrics in such a scenario. To the best of our knowledge, this
is the first work to address secure score/decision level fusion
using non-interactive homomorphic encryption to facilitate
biometric cloud services while mitigating concerns about the
scores or decisions being exploited by an adversary.

In the above scenario, the threat model is as follows. The
application layer sends biometric data AND the public key to
the biometric service provider. Each biometric service (e.g.,
face, fingerprint, etc.) provider will perform matching and
generate a score/decision. They will encrypt the score/decision
and send it to the fusion layer where the encrypted fusion will
happen. The result is sent to the application layer which will
decrypt with the secret key. We assume that the biometrics
service providers will always follow protocol to encrypt the
scores/decisions and send them to the fusion service provider.
Lastly, we assume that the biometric service provider is not
malicious. While this paper focuses on securing the fusion
service, the biometric matching service, and thus the end-to-
end biometric fusion system, can also be secured by encrypting
the query and gallery performing the matching [9], [15] in the
encrypted domain.

II. ENCRYPTION AND FHE SCHEMES

Encryption is vital in securing sensitive data from unautho-
rized access or modification. It involves transforming plaintext
data into ciphertext using a cryptographic algorithm and a
secret key. Only authorized parties with the private key can
decipher the ciphertext back into plaintext. In this paper, we
focus on a fully homomorphic encryption (FHE) scheme,
which allows computation on encrypted data without the
need for decryption. It is important to note that there are
several types of homomorphic encryption, including, Partially
Homomorphic Encryption (PHE), which allows addition or
multiplication; Somewhat Homomorphic Encryption (SHE),
which allows limited computation on ciphertexts; Leveled
Homomorphic Encryption (LHE) which allows computation
on ciphertexts of limited depth with an option to increase
the depth by using multiple levels of encryption and Fully
Homomorphic Encryption (FHE) which allows computation
on ciphertexts of any depth and complexity.

Our work uses the CKKS encryption scheme that allows
operations over encrypted vectors of complex numbers [11].
Over the other available FHE schemes (e.g., BGV [10], BFV
[18]), CKKS offers operations on floating point numbers.
CKKS also offers post-quantum security for an appropriate
choice of encryption parameters [3].

Three keys are involved in the CKKS scheme: a secret key
sk, a public key pk, and an evaluation key evk. The details of
the scheme’s functions are as follows: Key Generation: Gen-
erates all the three keys described above: a secret key for de-

cryption sk, a public key for encryption pk, and an evaluation
key for homomorphic multiplication evk; Encryption: The
plaintext polynomial is encrypted to generate the ciphertext us-
ing the secret key into a set of two polynomials; Decryption:
Given a ciphertext comprised of two polynomials, apply the
secret key and retrieve a plaintext polynomial. The two basic
operations that are part of the scheme include: Addition:
A simple sum of the ciphertexts translates to homomorphic
addition; Multiplication: Multiplication of ciphertexts is poly-
nomial multiplication that results in three polynomials.

One of the challenges in an FHE scheme is the accumulation
of noise as the computation depth increases. A process known
as bootstrap is needed to refresh the ciphertext and reduce
the noise in the ciphertext. This process is computationally
expensive but the only way to evaluate deeper circuits. There
are several publicly available open-source versions of the
CKKS scheme, including HEAAN [11], SEAL [1], and HELib
[21]. We have opted for HEAAN since it supports bootstrap.
The user in the HEAAN [11] has to handle relineralization to
restrict the size of resultant ciphertexts.

III. PRIOR WORK

The protection of biometric templates’ privacy has been
addressed using cryptographic tools such as oblivious transfer,
homomorphic encryption, secret sharing, and garbled circuits.
These tools are commonly employed in the semi-honest threat
model to achieve security. Operating protocols in the encrypted
domain present challenges due to their high complexity, ne-
cessitating optimization at various levels. In the encrypted
domain, efficient implementations are crucial, favoring algo-
rithms with lower complexity, even if they sacrifice some
accuracy.

Higher security guarantees are essential to meet the require-
ments imposed by the General Data Protection Regulation
(GDPR) and safeguard against malicious attackers. SEMBA
[6] presents a comprehensive review of existing works address-
ing security concerns in biometric authentication. Previous
proposals by Kantarcioglu and Kardes [23], Abidin [2], Pathak
and Raj [26], and others have explored various techniques,
such as dot product and equality checks, homomorphic encryp-
tion, and garbled circuit techniques, to protect biometric data
against malicious attacks. However, practical implementation
details were lacking in some cases, while other approaches
required decryption of the final result, potentially introduc-
ing security vulnerabilities. SEMBA [6] focuses on a multi-
biometric authentication protocol that preserves privacy by
utilizing face and iris recognition. It primarily focuses on the
SPDZ framework, a two- or multi-party computation protocol
designed to provide secure computations against adversaries. It
utilizes somewhat homomorphic encryption and secret-sharing
techniques. The paper uses the well-known sum rule for
fusing face and iris templates. It should be noted that this
protocol solely handles integers. The SEMBA protocol entails
communication between the client and the server, including
the transmission of encrypted data. This communication over-
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Fig. 2. (a) and (b) Score level fusion (Unencrypted and encrypted), (c) and (d) Decision level fusion (Unencrypted and encrypted).

head may introduce additional latency and potential security
vulnerabilities if not managed effectively.

Early biometric systems driven by HE were based on par-
tially homomorphic encryption (PHE) schemes applied to nu-
merous biometric modalities such as face, iris, and fingerprints
[4], [5], [8], [19], [31], [32]. More recently, Gomez-Barrero
et al. [20] developed a general framework for template-level
fusion based on homomorphic encryption. FHE-based work
has been reported by Boddeti [9], which demonstrated the
ability to match face templates in the encrypted domain.
Engelsma et al. [16] proposed an efficient way to search
encrypted templates by combining a novel encoding scheme
with feature compression. Drozdowski et al. [14] proposed
an indexing scheme by using a tree search structure created
by fusing similar templates. Bassit et al. [7] introduced a
homomorphic encryption-based biometric matching scheme to
eliminate costly homomorphic multiplication operations. Most
recently, Sperling et al. [29] proposed a biometric template
fusion method in FHE. In contrast to this body of work,
we leverage fully homomorphic encryption for score/decision-
level fusion in this paper.

IV. PROPOSED ENCRYPTED FUSION ALGORITHM

Since fully homomorphic encryption (FHE) can compute
any arbitrary function directly on encrypted data, it is an at-
tractive option for privacy-preserving biometrics applications.
Therefore, the results of the computations are only available
to one with access to the private key used in setting up the
cryptosystem for FHE.

In order to model the biometric fusion system, we assume
the availability of m biometric classifiers for fusion, each
of which provides a score/decision in encrypted form. Our
objective is to design (i) a customized decision-level fusion
in FHE and, (ii) a score-level fusion algorithm as shown in
Figure 2. Additionally, we aim to perform encrypted score-
level fusion using encrypted score normalization functions. In
both cases of decision or score fusion, the last stage of the
fusion process requires a comparison to a threshold. When a
weighted fusion scheme is needed, the threshold is adjusted
accordingly.

A. Comparison Algorithms

While in theory CKKS can compute any arbitrary function,
in practice, they support homomorphic addition and multi-
plication. Beyond that, many functions need to be estimated
using polynomial approximations of the intended function. A
compare function can be defined as comp(a,b) = 0 if a<b;
1 if a>b; and 0.5 otherwise. A compare function requires
a non-arithmetic operation not supported by the FHE. So
a polynomial approximation is necessary. The usual poly-
nomial approximation methods, such as minimax [17], find
approximate polynomials with a minimal degree on a target
function for a certain error bound. However, considering that
the CKKS scheme can only support a limited computation
depth, the computational complexity to evaluate high-degree
polynomials makes it highly impractical and inefficient to
obtain approximate results. Recently, to resolve this prob-
lem, Cheon et al. [12] defined a new iterative definition:
comp(a, b) = limk→∞

ak

(ak+bk)
achieving a Θ(α log(α)) com-

putational complexity to obtain approximate values within an
error rate 2−α.

Later Cheon et al. [12] proposed a new comparison method
by approximating the sign function using a composite poly-
nomial. In the same work, they also showed that faster con-
vergence is possible by using a mixed composition (g(x) and
f(x) in Table I and II) of polynomials. Both these functions
have a common theme of iteratively computing the results.
This helps us decide the resolution and computational depth
needed in an application. Additionally, they also show how
to systematically devise polynomials f and g. Using these
functions consumes significant multiplicative circuit depth.
Hence, one has to limit the number of iterations without
impacting the result expected in the application at hand such
as the biometrics fusion.

The two algorithms based on [13] definition are shown
in algorithms 1 and 2. We evaluate the performance of the
comp and compG algorithms in Table I and II (Interchanged
as compA and compB respectively) on encrypted biometric
data. While compA has two parameters - (n and d), compB
has three parameters - (n, dg and df ): n for the degree of
the polynomial, d and df for the number of iterations for the
function f(x), and dg for the number of iterations for the



1: function COMPA(a, b, n, d)
2: x← a− b
3: for i← 1 to d do
4: x← f(n, x)
5: end for
6: return (x+ 1)/2
7: end function

f1(x) = − 1
2
x3 + 3

2
x

f2(x) =
3
8
x5 − 10

8
x3 + 15

8
x

f3(x) = − 5
16

x7 + 21
16

x5 − 35
16

x3 + 35
16

x

f4(x) =
35
128

x9 − 180
128

x7 + 378
128

x5 − 420
128

x3 + 315
128

x

TABLE I
ALGORITHM COMPA [12] AND ITS ASSOCIATED POLYNOMIAL fn .

function g(x) in compB. The first algorithm, compA(a, b,
n, d), takes four inputs: a, b, n, and d. It computes the value
x = a - b and then applies the function f(n, x) to x, d times.
Finally, it returns the value (x+1)/2.

The second algorithm, compB(a, b, n, dg, df),
takes five inputs: a, b, n, dg , and df . It computes the value x =
a - b and then applies the function g(n, x) to x for dg iterations,
followed by applying the function f(n, x) to x another df times.
Finally, it returns the value (x+1)/2. The second algorithm
performs better than the first because it applies two different
functions, g(n, x) and f(n, x), to x in sequence, whereas the first
algorithm applies only f(n, x). Using g(n, x) likely introduces
more variation in the values of x than using only f(n, x),
allowing for more diverse computation and potentially better
performance. Additionally, using two different functions may
allow for more effective cancellation of errors that might be
introduced during the computation.

1: function COMPB(a, b, n, dg , df )
2: x← a− b
3: for i← 1 to dg do
4: x← g(n, x)
5: end for
6: for i← 1 to df do
7: x← f(n, x)
8: end for
9: return (x+ 1)/2

10: end function

g1(x) = − 1359
210

x3 + 2126
210

x

g2(x) =
3796
210

x5 − 6108
210

x3 + 3334
210

x

g3(x) = − 12860
210

x7 + 25614
210

x5 − 16577
210

x3 + 4589
210

x

g4(x) =
46623
210

x9 − 113492
210

x7 + 97015
210

x5 − 34974
210

x3 + 5850
210

x

TABLE II
ALGORITHM COMPB [12] AND ITS ASSOCIATED POLYNOMIAL gn . THE

POLYNOMIAL fn IS THE SAME AS IN THE COMPA ALGORITHM.

We conducted experiments using different combinations of
values for n ranging from 1 to 4, d from 1 to 4, dg + df
from 2 to 4, and the difference between the two comparison
numbers, i.e., a − b from −0.5 to 0.5. It can be observed
that higher polynomial degrees (n) and a larger number of
iterations (d) yield better approximations and hence better
comparison results. However, FHE-aware comparators become
less accurate if the two numbers being compared are closer.

Finally, it is to be noted that CompB outperforms CompA in
terms of accuracy and speed for close cases. In the context of
a multimodal system with m=9 different biometric models for
fusion, the extreme cases are pretty quickly handled, as shown
in Figures 4.
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Fig. 3. CompA and CompB for close numbers as a function of the polynomial
degree and the number of iterations. With four iterations, and n=3, the
convergence is the fastest.

In homomorphic encryption, the multiplicative depth refers
to the maximum number of times two ciphertexts can be mul-
tiplied together before the result must be decrypted. This poses
a challenge to homomorphic encryption schemes as there is
a trade-off between the level of computation that the scheme
can support, represented by the maximum multiplicative depth,
and the size of the ciphertexts and the noise that accumulates
during the computation.

Considering the effect of the number of iterations and
polynomial degrees on the multiplicative depth in FHE is
crucial. The multiplicative depth increases linearly 5 with the
number of iterations and exponentially with the degree of the
polynomial due to the power computation involved. Therefore,
when selecting the parameters of comparison algorithms, it is
essential to account for the potential increase in multiplicative
depth to ensure that the computation remains within the limit
of the encryption scheme.

B. Score Normalization

Score normalization is a critical step in multimodal biomet-
ric systems to ensure that the scores obtained from different
biometric modalities are on a common scale and can be
combined effectively. Extending the conclusions from [22],
applying min–max, z-score, and tanh normalization schemes
followed by a simple sum of scores fusion method results in
better recognition performance compared to other methods.

Min-max and sum rule normalization are popular score
normalization methods, particularly in multimodal biomet-
ric systems. Min-max normalization maps the scores from
different modalities to a common range (typically 0 to 1),
allowing easy comparison. The sum rule is a straightforward
and efficient approach to normalizing scores in biometric
recognition systems. It has the added benefit of ensuring
that the scores are consistent and can be compared across
different recognition experiments, making it an essential tool
for achieving optimal performance.

Our study employs a multimodal biometric system that
utilizes encrypted scores and unencrypted min-max ranges
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Fig. 4. CompA results for extreme cases, defined as the numbers being compared being too close in contrast to the easy cases where the numbers are far
apart. The results are best for n=3 and d=4.
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Fig. 5. CompA and CompB Multiplicative depth. As the degree and iterations
grow, the multiplication depth increases linearly. We need to pay attention to
the multiplicative depth so as not to hit the bootstrap threshold.

for score normalization. Using the min-max normalization
method, we normalize the encrypted scores by mapping them
to a common range. These normalized scores are then com-
bined or fused by computing their average. The fused score
is assessed by comparing it to a predefined threshold using
the compB algorithm. Notably, the results in the encrypted
domain align with those in the plaintext, indicating a consistent
outcome since the division is performed using a plaintext
constant.

C. NIST BSSR score dataset

In addition to the simulated data, we also tested our algo-
rithm on NIST BSSR1 - a publicly available multi-modal score
dataset involving face and fingerprint matcher scores from
multiple vendors with a total of 517 identities. This dataset
allowed us to evaluate biometric fusion in both verification
and identification scenarios, providing a rich set of mated and
non-mated pairs for analysis.

We first normalized each of the four modalities and then
applied a threshold to the fused scores for performance eval-
uation. Notably, the identification scenario was of particular
interest in the Fully Homomorphic Encryption (FHE) setting
due to its ability to parallelly process a large number of records
in the database. By processing 214 or 16, 384 scores at once,
we obtained the identification results efficiently.
Result Analysis: After comparing the two algorithms with
varying parameters, we found that compB is much faster
with a small number of iterations. Although its error rate
increases as the iterations decrease, it still outperforms compA
as the error is still significantly below compA. The comparison

results obtained using compB are within an acceptable error
range relative to compA, with a nearly twice speedup. Fine-
tuning the parameters of the algorithms makes it possible
to strike a balance between accuracy and computation time,
depending on the required level of accuracy and the trade-off
with computation time.

Table III displays the computation time for two comparison
algorithms using the same degree of the polynomial and the
total number of iterations. Algorithm compB matches the
accuracy achieved by compA while requiring fewer iterations
to converge, rendering it a faster alternative as can be seen
in Figures 3 6. This finding indicates that choosing the
appropriate comparison algorithm can significantly impact
the overall performance of homomorphic encryption schemes.
Such optimization is crucial, especially when dealing with
large-scale computations, as it can reduce computation time
and improve the system’s efficiency.

n d dg df compA (s) compB (s)

3 4 2 2 34.45 34.47
3 4 2 1 35.21 29.21

TABLE III
COMPA AND COMPB COMPUTATION TIMES IN (S) FOR DIFFERENT

PARAMETER SETUP.

NIST BSSR Results: For the identification scenario, we
selected a threshold value of 0.386, determined from the ROC
of the unencrypted evaluation of 517x517 score entries. This
threshold yielded promising results, with 499 True Positives,
18 False Negatives, and 266, 772 True Negatives. Out of
the 517 true identities present in the dataset, 515 identities
exhibited top comparison score matches (rank one score),
indicating the effectiveness of our approach in correctly iden-
tifying individuals.

Furthermore, we measured the practicality of our approach
by evaluating the time taken for each batch of 16,384 com-
parisons. The results showed that each batch required 34s of
execution time and only 10s of execution time upon using
multithreading, which is equivalent to about 2.07 and 0.61
msec/comparison, respectively, demonstrating the efficiency
and real-world applicability of our biometric fusion technique.

FHE-based algorithms are widely recognized to exhibit
considerably higher execution times compared to cleartext
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Fig. 6. (a) Comparison of algorithms for n = 3 and 4 iterations (d, dg + df ).
Most of the time, the comparison output matches with the cleartext algorithm;
(b) Errors of comp algorithms with different combinations of n, d, dg , and
df . The smallest error is achieved with CompB with n = 3, d = 2, dg = 2,
and df = 2.

computations. On average, the comparison operation takes ap-
proximately 32 seconds to complete. However, it is noteworthy
that by employing multithreading, the elapsed time signifi-
cantly decreases to approximately 10 seconds on average.

V. CONCLUSIONS

In this paper, we proposed the first non-interactive end-
to-end homomorphically encrypted multimodal decision-level
and feature-level fusion and matching system. From an in-
ference perspective, we carefully analyzed different ways to
compute a comparator function based on polynomial approx-
imation schemes suitable for score and decision-level fusion.
Experimental results show that our approach can handle fusion
due to approximations induced by FHE constraints while
being practically feasible, taking about 32s of single-threaded
execution time and 10s in a multithreaded setup using 8
threads, to fuse encrypted scores and decision vectors of size
up to 214. We presented results on the NIST BSSR-1 dataset
in the context of an identification scenario where our method
demonstrated nearly identical matches to the unencrypted
domain with minimal errors, affirming its practicality for real-
world applications.
Acknowledgement: This material is based upon work sup-
ported by the Center for Identification Technology Research
and the National Science Foundation under Grant Nos.
1822190 and 1841517.
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