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Abstract—Deploying high-performance vision transformer (ViT) models on ubiquitous Internet of Things (IoT) devices to provide

high-quality vision services will revolutionize the way we live, work, and interact with the world. Due to the contradiction between the

limited resources of IoT devices and resource-intensive ViT models, the use of cloud servers to assist ViT model training has become

mainstream. However, due to the larger number of parameters and floating-point operations (FLOPs) of the existing ViT models, the

model parameters transmitted by cloud servers are large and difficult to run on resource-constrained IoT devices. To this end, this

paper proposes a transmission-friendly ViT model, TFormer, for deployment on resource-constrained IoT devices with the assistance

of a cloud server. The high performance and small number of model parameters and FLOPs of TFormer are attributed to the proposed

hybrid layer and the proposed partially connected feed-forward network (PCS-FFN). The hybrid layer consists of nonlearnable modules

and a pointwise convolution, which can obtain multitype and multiscale features with only a few parameters and FLOPs to improve the

TFormer performance. The PCS-FFN adopts group convolution to reduce the number of parameters. The key idea of this paper is to

propose TFormer with few model parameters and FLOPs to facilitate applications running on resource-constrained IoT devices to

benefit from the high performance of the ViT models. Experimental results on the ImageNet-1K, MS COCO, and ADE20K datasets for

image classification, object detection, and semantic segmentation tasks demonstrate that the proposed model outperforms other

state-of-the-art models. Specifically, TFormer-S achieves 5% higher accuracy on ImageNet-1K than ResNet18 with 1.4× fewer

parameters and FLOPs.

Index Terms—Internet of Things, cloud computing, cloud-assisted, vision transformer.

✦

1 INTRODUCTION

The International Data Corporation predicts that by 2025,
there will be 41.6 billion connected Internet of Things (IoT)
devices [1]. Additionally, the recently proposed vision trans-
former (ViT) models, with the support of large datasets,
have crushed the convolutional neural network models that
have dominated for many years in multifarious vision tasks,
such as image classification [2], [3], object detection [4],
[5], and semantic segmentation [6], [7]. Deploying high-
performance ViT models on ubiquitous IoT devices to pro-
vide high-quality vision services has attracted great atten-
tion from both industry and academia.

However, since IoT devices are resource-constrained
(e.g., limited storage and computing resources), it is dif-
ficult to provide sufficient resources for training resource-
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Fig. 1: Overview of system architecture.

intensive ViT models. Therefore, it has become mainstream
to assist model training with the help of cloud/edge
servers [8]–[13]. In general, the cloud server first trains
the ViT model and then sends it to the IoT device for
deployment and updating, as illustrated in Fig. 1. The ViT
model contains a large number of parameters (e.g., ViT [4]
contains 41 million parameters), which leads to transmitting
a large number of model parameters when the cloud server
assists in deploying and updating the model. In particular,
in the construction of the smart city, when a cloud server
assists thousands of IoT devices, the transmission of a large
number of model parameters will lead to heavy network
load and difficulty in online deployment and updating of
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ViT models. In addition, existing ViT models contain a large
number of floating-point operations (FLOPs), making them
difficult to deploy on resource-constrained IoT devices.
Therefore, to facilitate the cloud server to assist IoT devices
in deploying and updating the model, it is necessary to
reduce the number of model parameters and FLOPs, espe-
cially in today’s Internet of Everything era. To this end, this
paper aims to implement a transmission-friendly ViT model
for IoT devices to reduce the number of model parameters
and FLOPs while improving model performance.

First, this paper proposes a hybrid layer consisting of
nonlearnable (NL) modules and a pointwise convolution
to replace the multihead attention (MHA) of the standard
ViT. The NL module consists of maximum (max) pooling
and average (avg) pooling. Additionally, the NL module
can easily and parallelly extract multitype and multiscale
features to improve the transformer performance, e.g., using
3 × 3, 5 × 5, or 7 × 7 max/avg-pooling. The pointwise
convolution consists of 1 × 1 convolutions with only a few
learnable parameters. Therefore, replacing the MHA with
the proposed hybrid layer can greatly reduce the number of
model parameters and FLOPs.

Then, this paper introduces the group convolution for
channel sparse connection to reduce the number of param-
eters in the feedforward network of the ViT. Group convo-
lution can significantly reduce the number of parameters
by ensuring that each convolution operates only on the
corresponding group of input channels. Motivated by [14],
we introduce the channel shuffle operation to allow group
convolution to obtain input data from different groups;
that is, the input and output channels can be fully related.
We also present a tradeoff between the number of model
parameters and model performance analyzed from the ex-
perimental results.

By introducing the hybrid layer and group convolution
into the existing ViT, we propose a Transmission-Friendly
vision Transformer (TFormer), which has fewer parameters
and FLOPs while also achieving higher performance. It can
be deployed on a large scale on IoT devices with cloud-
assisted training. Since our TFormer is similar in structure
to the existing ViT, we call TFormer a kind of ViT.

Finally, this paper conducts extensive experiments on
the ImageNet-1K, MS COCO, and ADE20K datasets, and
the experimental results show that our proposed TFormer
achieves strong performance on the recognition tasks of
image classification, object detection, and semantic segmen-
tation. For example, when the number of model parameters
is similar, our proposed TFormer achieves 41.2 average pre-
cision (AP) on the MS COCO dataset, which surpasses the
previous state-of-the-art result by +2.3 AP. ADE20K seman-
tic segmentation obtains 41.8 mean intersection over union
(mIoU), an improvement of +2.3 mIoU over the previous
state-of-the-art results. In addition, we also demonstrate the
advantages of TFormer in the number of model parameters
and FLOPs, making it more suitable for deployment on
resource-constrained IoT devices.

In summary, our main contributions are as follows:

– This paper presents a new pathway towards efficient ViT
models for IoT devices, comprising a novel hybrid layer and
a novel feedforward network with group-wise connections.

– The key component of the proposed hybrid layer is the
nonlearnable module with multiple non-parametric opera-
tions (i.e., pooling operators with various kernel sizes) in
parallel to extract multitype and multiscale features, while
at the same time reducing the model parameters and FLOPs
substantially.

– Extensive experiments conducted on the ImageNet, MS
COCO, and ADE20K datasets verify the effectiveness of the
proposed method over classification, object detection, and
semantic segmentation tasks.

The remainder of the paper is organized as follows.
Section 2 reviews the related work on cloud-assisted ap-
proaches and ViT models. Section 3 describes the proposed
TFormer model in detail. Section 4 presents our evaluation
results, and Section 5 concludes the paper.

2 RELATED WORK

In this section, we introduce the cloud-assisted approach
and the ViT models that are most relevant to this paper.

2.1 Cloud-assisted Approach

Due to the limited resources of IoT devices, it is difficult
to provide sufficient computing and storage resources for
training high-performance deep neural network models
(e.g., deep convolutional neural networks and transform-
ers). To this end, it has become the mainstream to first
use well-resourced cloud/edge servers to assist in training
high-performance models [15]–[23]. For example, inspired
by [24], Ding et al. [16], [25] proposed training a complex
neural network model on a cloud server and a simple
neural network model on an edge server and improving the
performance of the latter by sharing some layer parameters
of the complex neural network model with the simple
neural network model. Teerapittayanon et al. [17] proposed
a distributed deep neural network architecture consisting of
cloud servers, edge servers and IoT devices. Similarly, Kang
et al. [26] proposed dividing the neural network model into
two parts, which are run on cloud servers and IoT devices.

Many studies have also made innovative contributions
to adapting IoT devices. For example, to adapt to the
dynamically changing available resources of IoT devices,
Han et al. [27] proposed deploying multiple model variants
on IoT devices. Fang et al. [28] proposed making multiple
model variants share parameters to save the limited storage
resources of the IoT device. Additionally, to reduce the
number of model parameters when the cloud server assists
in training the IoT neural network model, many researchers
proposed using model compression [29] or knowledge dis-
tillation [30] to reduce the amount of model parameter
transmission. For example, Laskaridis et al. [31] proposed
using a model compression technique to reduce the number
of model parameters during the interaction between the
cloud server and the IoT device.

Different from the above methods, our method focuses
on reducing the number of model parameters and floating-
point operations by analyzing the components of the model
in detail and introduces pooling techniques and group
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convolutions to achieve this goal. Model compression tech-
niques can further reduce the number of model param-
eters based on our method. The study of adapting IoT
devices [27], [28] can also be built on our method.

2.2 Vision Transformers

Considering the great success of the transformer [32] in
the natural language processing field, the application of the
transformer architecture to the vision field has attracted the
attention of a large number of scholars and achieved attrac-
tive results [2], [3], [5], [33]–[35]. For example, Dosovitskiy et
al. [2] pioneered the standard transformer to process images
directly. They split the image into patches and provide a
sequence of linear embeddings of these patches as input
to the transformer. Liu et al. [5] proposed a hierarchi-
cal transformer (swin transformer) to support large-scale
variations of visual entities and high-resolution pixels in
images. To improve the convergence rate of the transformer,
Touvron et al. [3] proposed a teacher-student strategy for
the transformer. Wu et al. [33] introduced convolution in
the standard transformer to improve the performance of
the transformer so that the transformer containing the con-
volution affords both the advantages of the convolution
and the standard transformer. Similarly, Yuan et al. [34]
also introduced convolution in the standard transformer to
improve the transformer’s performance in vision tasks.

Accordingly, existing vision transformers achieve high
performance by leveraging the multihead attention module
to capture the global information of data. However, due to
the quadratic complexity of the multihead attention module,
it is difficult for existing ViT models to be widely deployed
in resource-constrained IoT devices. In addition, the feedfor-
ward network module included in the existing ViT model
contains a large number of parameters, which makes it
necessary to transmit a large number of model parameters
during cloud-assisted deployment and updating. This will
hinder the wide deployment of the ViT model in IoT devices
in the era of the Internet of Everything, where bandwidth
resources are tight. To this end, we analyze the components
of the ViT model in detail from the perspective of cloud-
assisted deployment to reduce the number of model param-
eters and floating-point operations, as well as maintain the
performance of the model.

Existing efforts toward improving the efficiency of ViT
models can be broadly classified into three categories. The
first group of methods focuses on reducing the complexity
of the attention module by imposing the locality of input im-
ages adaptively [36], [37]. The second group applies pruning
methods to remove unimportant components (e.g., partial
channels) [38] or inputs (i.e., patches) [39] to a ViT model.
The third group of methods uses neural architecture search
(NAS) techniques to design efficient ViT models by opti-
mizing architectural hyperparameters, such as channels and
depth [40], [41]. On one hand, the improvements in model
efficiency provided by adaptive attention mechanisms are
still insufficient for tasks with high-resolution imagery (e.g.,
object detection, segmentation, etc.). On the other hand,
despite the promising results, both pruning and NAS-based
approaches are computationally expensive, requiring days
to weeks on a cluster of GPUs to execute the methods.

3 DESIGN OF THE PROPOSED APPROACH

In this section, we first introduce the overview of the
proposed framework and motivation. We then provide the
detailed design of our proposed hybrid layer and partially
connected and shuffled feedforward network (PCS-FFN).

3.1 Overview

TABLE 1: Specific design details of three TFormer variants.

Stage #Tokens Specifications
TFormer

S M L

1 H
4

×
W
4

Patch size 7×7, stride 4

Embed. dim. 64

FFN ratio 4, groups 2

#Layers 2 4 6

2 H
8

×
W
8

Patch size 3×3, stride 2

Embed. dim. 128

FFN ratio 4, groups 2

#Layers 2 4 6

3 H
16

×
W
16

Patch size 3×3, stride 2

Embed. dim. 320

FFN ratio 4, groups 2

#Layers 6 12 18

4 H
32

×
W
32

Patch size 3×3, stride 2

Embed. dim. 512

FFN ratio 4, groups 2

#Layers 2 4 6

Parameters (M) 8 14 20

Multi-Adds (G) 1.2 2.2 3.2

The overall framework first trains a vision transformer
(ViT) model on the cloud server. Then, the cloud server
sends the trained model to IoT devices to provide a variety
of convenient services, such as object detection and segmen-
tation services. See Fig. 2 for a pictorial overview.

The goal of this paper is to develop a transmission-
friendly ViT model while ensuring its performance. To fulfill
this goal, we first propose a compact yet effective ViT
model, dubbed TFormer, tailored for IoT applications. As
depicted in Fig. 2 (top-right), the main computational block
of TFormer comprises a hybrid layer and a partially connected
and shuffled feedforward network (PCS-FFN), replacing the
multihead attention (MHA) layer and the standard FFN in
existing ViTs, respectively. The design principles of the hy-
brid layer and PCS-FFN are carefully explained and empir-
ically validated in Section 3.3 and Section 3.4, respectively.
Subsequently, we develop three variants of TFormer with an
increasing model capacity, i.e., TFormer-S, TFormer-M, and
TFormer-L. The specific configuration details of the three
variants are provided in Table 1.

3.2 Motivation

Generally, there are two aspects to measure whether a model
is suitable for running on resource-constrained IoT devices,
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Fig. 2: Overview of the proposed framework.

namely, the number of model parameters and the number
of floating-point operations (FLOPs) required to run the
model. To be consistent with prior work, we consider the
number of floating-point operations for multiplication and
addition together as one FLOP [42].

On the one hand, the number of model parameters
affects the deployment of the model in two ways: (i) the
quantity of data required to be transmitted between cloud
and IoT devices and (ii) the size of the model. First, we aim
to train a ViT on the cloud server, which is then sent to IoT
devices for deployment. In the Internet of Everything era,
considering the online deployment and updating of models
on hundreds of millions of IoT devices, it is necessary
to reduce the quantity of data sent by the cloud server
to IoT devices. Second, the number of model parameters
determines both the storage space and memory resources of
the IoT device that will be occupied by the model.

On the other hand, the number of FLOPs signifies the
computational complexity of a ViT model, where a higher
value of FLOPs typically results in higher power consump-
tion and longer inference latency [43], [44]. Particularly, IoT
devices are mostly constrained by resources, such that the
level of computational complexity (FLOPs) of a ViT model
is especially important.

Therefore, to facilitate cloud-assisted deployment and
updating of models on IoT devices, it is necessary to reduce
the number of parameters and the number of FLOPs of the
ViT model simultaneously.

3.3 Design of Hybrid Layer

Preliminaries. The multihead attention (MHA) is one of
the cornerstones in existing ViT models [2], [5], [32], [35],
[45]. Undoubtedly, MHA is important for model perfor-
mance owing to its ability to extract nonlocal dependencies.
Nevertheless, the steep computational overhead has greatly
restricted its application to resource-constrained hardware,
such as IoT devices.

Specifically, let us consider an input X ∈ R
N×D , where

N is the size of the input (i.e., number of pixels) and D is the
embedding dimension (i.e., number of channels). Assuming
the number of attention heads is h, then for each head i, the
input X is embedded into a query (Qi), key (Ki), and value
(Vi), as follows:

Qi = XW
Q
i , Ki = XWK

i , Vi = XWV
i , (1)

where W
Q
i , WK

i , and WV
i ∈ R

D×D/h are learnable param-
eters for i = 1, . . . , h. The attention for the ith head is then
computed as follows:

Attention(Qi,Ki,Vi) = softmax
(
QiK

⊺

i√
D
h

)

Vi . (2)

Then, the outputs from all heads are concatenated along the
channel dimension:

[head1, . . ., headh] = Concat
(
Attention(Q1,K1,V1), . . . ,

Attention(Qh,Kh,Vh)
)

(3)
Finally, the concatenated outputs are projected via another
learnable parameter W ∈ R

D×D , yielding the final outputs
of the MHA as follows:

MHA(X) = [head1, . . ., headh]W (4)

Accordingly, the number of parameters of MHA can be
derived as:

PMHA = 3
h∑

i=1

D × D

h
︸ ︷︷ ︸

WQ,WK ,WV

+D ×D
︸ ︷︷ ︸

W

= 4D2,
(5)

which is quadratic to the embedding dimension D. Con-
sidering typical embedding dimension values (i.e., D ∈
{128, 320, 512}) used in existing ViTs [2], [3], the resulting
number of parameters can be prohibitive to transmit be-
tween cloud and IoT devices. Similarly, we can derive the
number of FLOPs of MHA as follows:
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Fig. 3: Hybrid layer: It first uses the nonlearnable module
to extract multitype and multiscale features and then uses
pointwise (1 × 1) convolution to enable these features to
establish information interactions between channels.

FMHA = 3ND
D

d
︸ ︷︷ ︸

Eq 1

+N
D

h
N +NN

D

h
︸ ︷︷ ︸

Eq 2-3

+NDD
︸ ︷︷ ︸

Eq 4

.
(6)

Since the input size is typically much greater than the
embedding dimension (i.e., N ≫ D), FMHA is approximately
quadratic to the input size N . Given the input sizes of the
considered tasks (e.g., 1200×800 for object detection), one
computation of MHA can already be too expensive for IoT
devices.

Design principles. To this end, we aim to propose a
novel layer to replace MHA for reducing both the num-
ber of model parameters and FLOPs while maintaining
similar model performance. As explained by the original
authors [32], the role of MHA is to enable ViT models to
jointly focus on information from different representation
subspaces at different locations. From this point of view, it
can be equivalent to using multiple types of filters to extract
diverse features. Under this assumption, we propose a hy-
brid layer that contains only a few learnable parameters but
can extract multitype and multiscale features. As depicted in
Fig. 3, the proposed hybrid layer comprises a nonlearnable
(NL) module and a pointwise (i.e., 1× 1) convolution. In this
hybrid layer, the NL module is used to extract diverse spa-
tial information, while the pointwise convolution is learned
to recombine the multitype and multiscale information.

As depicted in Fig. 4a, our NL module comprises a max-
pooling operation and an avg-pooling operation. The max-
pooling operation calculates the maximum value of feature
patches, which is known to be invariant to a small amount of
translation. In parallel, the avg-pooling operation calculates
the mean value for feature patches. Furthermore, we allow
each pooling operation to have multiple kernel size settings
in parallel to capture multiscale features, as depicted in
Fig. 4b. We set the padding accordingly to maintain the
same spatial size of inputs. More specifically, let’s consider
that there are one input and one output feature map. Then
the size of the extracted output feature map is calculated as
N = [(W −K+2P )/S]+1, where W is the size of the input
feature map; K is the pooling size (e.g., 3 × 3, 5 × 5, etc.),
P is the padding size; S is the stride. To maintain the same
sizes between input W and output N feature maps under
different pooling size K , we first set the stride S to one then
adjust the padding P accordingly. For instance, we set P
to 1 and 2 for pooling sizes of 3 × 3 and 5 × 5 respectively.
Technically, one may have as many NL operations in parallel

�������	
��

�
�
�������

�������	
��

���
�������

���	
����
����

�����

(a) Nonlearnable modules
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(b) Multiscale average pooling

Fig. 4: (a) Our nonlearnable modules comprise nonparamet-
ric pooling operations, i.e., avg and max poolings. (b) We
allow each pooling operation to have multiple kernel size
settings in parallel to capture multiscale features.

as one wishes, and we reserve this part of the work as in our
future studies.

Note that we split the inputs along the channel di-
mension for each NL operator and for each kernel size
within that operator to further reduce the computations.
Specifically, assuming that the number of input channels is
D and the number of considered kernel sizes is m, such a
channel splitting operation will maintain the same number
of output channels (as inputs) of D, instead of 2 ∗ D ∗ m
for the case without channel splitting. Then, the number of
learnable parameters of the proposed hybrid layer is simply
the number of parameters of the pointwise convolution,
i.e., PNL Layer = D2 assuming an equal number of input
and output channels. Hence, the ratio of the number of
parameters between the MHA and our hybrid layer is as
follows:

RP =
PMHA

PNL Layer
= 4D2

D2 = 4. (7)

Apparently, compared to MHA, our hybrid layer leads to
a 4× reduction in the number of parameters under the
assumption of equal embedding dimensions and channels.

The number of FLOPs of the proposed hybrid layer can
be computed as:

FNL Layer = DNk2
︸ ︷︷ ︸

NL modules

+ D2N
︸ ︷︷ ︸

1×1 Conv.

,
(8)

where k is the kernel size, N is the input size (i.e., number
of pixels), and D is the number of input/output channels.
Since the kernel size is typically much smaller than the
number of channels (i.e., k ≪ D), FNL Layer is approximately
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quadratic to the number of channels D. Thus, the ratio of
the number of FLOPs between MHA and our hybrid layer
can be approximated as follows:

RF =
FMHA

FNL Layer
∼ N2

D2 . (9)

Given the vision tasks considered in this work (e.g., object
detection, segmentation, etc.), the input size (e.g., N =
1200 × 800 for object detection) is much greater than the
number of channels (e.g., D = 512), and the resulting FLOPs
ratio is expected to be much greater than 1 (i.e., RF ≫ 1).
Hence, our hybrid layer also leads to significant savings in
the number of FLOPs compared to MHA.

TABLE 2: Ablation studies of our nonlearnable modules. All
variants have similar number of parameters and FLOPs.

Non-learnable operator Scale ImageNet
Top-1 Acc

Avg. Pool Max Pool 3×3 5×5 7×7 9×9 11×11

✓ ✓ 77.2%
✓ ✓ 77.2%
✓ ✓ 77.1%
✓ ✓ 76.8%

✓ ✓ ✓ 77.2%
✓ ✓ ✓ ✓ 77.3%
✓ ✓ ✓ ✓ ✓ 77.5%
✓ ✓ ✓ ✓ ✓ ✓ 77.7%

✓ ✓ ✓ 77.6%
✓ ✓ ✓ ✓ ✓ ✓ ✓ 78.0%

Effectiveness. Next, we provide empirical validations of our
hybrid layer. Specifically, we consider the image classifica-
tion task on the ImageNet-1K dataset [46]; we replace the
MHA layer with our hybrid layer in ViTs [2]; and compare
different variants of our hybrid layer. Experimental results
are summarized in Table 2. We observe that both adding
more types of operations and adding more scales (i.e., ker-
nel sizes) are beneficial to the model performance without
additional learnable parameters. These results provide the
empirical basis for the design of our hybrid layer.

3.4 Design of PCS-FFN

Preliminaries. In addition to MHA, the other main compu-
tational bottleneck in existing ViT models is the feedforward
network (FFN), which is usually placed immediately after
the MHA layer (see Fig. 2 top-right). An FFN comprises
two fully connected (linear) layers with an activation in
between, as shown in Fig. 5a. For an input Xin ∈ R

N×D ,
the first linear layer expands the number of channels to a
ratio of r, yielding an intermediate output Xinter ∈ R

N×rD.
Then, the second linear layer compresses channels back
to their original dimensions, outputting Xout ∈ R

N×D .
For a standard FFN, the number of parameters is PFFN =
D × rD + rD × D = 2rD2, and the number of FLOPs is
FFFN = 2rND2. In existing ViT models, the expansion ratio
r is typically set to 4.

Design principles. Recall that our goal is to develop a ViT
model suitable for deployment on IoT devices with the
assistance of the cloud server. In this section, we aim to
explore how to reduce the complexity of the standard FFN
layer while trading off the model performance to a small
extent. We again consider the image classification task on
the ImageNet-1K dataset for ablative studies.

TABLE 3: Ablative study on the proposed FFN. Our FFN is
highlighted in bold. All results are on ImageNet-1K.

Method #Params #MAdds Top-1 Acc

Standard FFN (r=1) [2] 6.0M 0.83G 70.8%
Ghost FFN (r=4) [47] 6.2M 0.87G 71.8%
PCS-FFN (r=4, g=4) 6.0M 0.83G 73.2%

Standard FFN (r=2) [2] 8.4M 1.2G 75.0%
Ghost FFN (r=2) [47] 8.5M 1.3G 75.5%
PCS-FFN (r=4, g=2) 8.4M 1.2G 76.1%

Standard FFN (r=4) 13M 2.0G 78.4%

On the one hand, a straightforward (or rather naive)
method for improving the efficiency of an FFN is to reduce
the expansion ratio r (see Fig. 5b). However, as we empir-
ically show in Table 3, reducing r results in a significant
degradation in model performance, e.g., the top-1 accuracy
drops by almost 8% as we reduce r from 4 to 1. Despite the
appealing improvement in model efficiency, such degrada-
tion in model performance renders the approach of reducing
the expansion ratio r unacceptable.

On the other hand, another method for improving model
efficiency is to reduce the number of connections while
keeping the number of channels intact. We can adjust the
number of channels by adjusting the group number g. Note
that when g=1, all channels of input and output are con-
nected. When g>1, the channels are divided into g groups,
the channels within each group are fully connected, and
there is no connection between different groups. One re-
alization of this idea is the groupwise connected layer (e.g.,
group convolution [48]). However, as pointed out by Zhang
et al., a standalone groupwise connected layer is equivalent
to training multiple independent small networks in parallel
[14], resulting in low efficiency of utilizing channel infor-
mation. Inspired by [14], we shuffle the channels between
the two groupwise connected layers to achieve “cross-talk”
among groups (see Fig. 5c). We name this design partially
connected and shuffled FFN (PCS-FFN).

Effectiveness. Evidently, as suggested by the results in
Table 3, PCS-FFN leads to a substantially better efficiency-
performance tradeoff than existing methods. Specifically, as
shown, PCS-FFN with four groups (i.e., PCS-FFN(r=4,g=4))
is 2.4% more accurate than the standard FFN with r=1 (i.e.,
Standard FNN (r=1)), while being equivalent in both the
number of parameters and FLOPs. As another reference for
performance comparison, we also implement a Ghost FFN
based on the concept (i.e., using depthwise operations to
partially replace dense operations) proposed in [47]. Given
the empirical evidences provided in Table 3, we set the
hyperparameters of PCS-FFN to 4 for expansion ratio r
and 2 for number of groups g for all experiments in the
remainder of this paper.

4 EXPERIMENTS

In this section, we first introduce our experimental setup,
including the datasets, baselines, implementation details,
and evaluation metrics used in this work. We then pro-
vide experimental comparisons with various state-of-the-
art methods for image classification, object detection, and
semantic segmentation tasks.
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(a) Standard FFN (r=2) (b) Standard FFN (r=1)

Re-arrange channel orders

(c) Our PCS-FFN (r=2, g=2)

Fig. 5: (a) Standard FFN comprises two fully connected linear layers to first expand the number of channels by a ratio r and
then compress them back to the original number of channels. (b) One straightforward way to reduce model parameters is
by reducing the expansion ratio r. (c) Instead, we propose using partially connected linear layers with rearranging channels
between the two layers. Note that both (b) and (c) achieve 2× savings in parameters.

TABLE 4: Benchmark datasets for evaluation.

Dataset Task Train Size Valid Size Image Size

ImageNet-1K [46]
Image

classification
1.28M 50K 224×224

MS COCO [49]
Object

detection
118K 5K 1280×800

ADE20K [50]
Semantic

segmentation
20K 2K 512×512

4.1 Experimental Setup

4.1.1 Datasets

We conduct experiments on three large-scale and chal-
lenging benchmark datasets, i.e., ImageNet-1K [46], MS
COCO [49], and ADE20K [50], for image classification,
object detection, and semantic segmentation tasks, respec-
tively. See Table 4 for an overview.

ImageNet is one of the cornerstone datasets for quantify-
ing progression in computer vision. ImageNet-1K is a subset
of ImageNet, which consists of 1.28 million training images
and 50K validation images from 1K different classes.

The MS COCO dataset comprises over 100K densely
annotated images of diverse objects from 80 categories. We
use the official train2017 split for training and compare
detection performance on the official val2017 split.

The ADE20K dataset is a challenging densely annotated
dataset for scene understanding. It contains 150 fine-grained
semantic categories with 20K, 2K, and 3K images for train-
ing, validation, and testing, respectively.

To be fair and consistent with prior works, we train on
the training set and report results on the validation set for
performance comparison.

4.1.2 Baselines

To verify the effectiveness of our proposed TFormer, we con-
sider a wide range of state-of-the-art baselines, as follows:

ResNet [42] is a family of classic convolutional neural
networks that have been shown to be effective across a
broad spectrum of vision tasks.

DeiT [3], on the one hand, is the same as the origi-
nal vision transformers (ViTs) [2] from the network archi-
tecture perspective. On the other hand, DeiT proposes a
data-efficient training method that enables ViTs to achieve
competitive performance without pretraining on millions of
images.

PVT [51] is a multiscale ViT as opposed to the original
ViT, which is single-scaled. PVT uses a progressive shrink-
ing pyramid to gradually reduce the spatial resolution of
features, and applies spatial reduction before attention to
save computations.

Swin-Mixer-T [5] uses local but shifted window atten-
tion to approximate full attention in ViTs. Empirically, it
is shown to be as effective as full attention but with a
considerable amount of savings in model complexity.

ResMLP [52] is a vision transformer-type architecture
built completely upon multilayer perceptrons.

PoolFormer [53] demonstrates the importance of the
skeleton structure of a vision transformer architecture,
where it shows that competitive performance can be
achieved with a simple average pooling operation.

4.1.3 Evaluation Metrics

For image classification on ImageNet-1K, we consider the
standard top-1 and top-5 accuracy to compare performance.
For object detection on MS COCO, we use the mean average
precision (AP) computed over multiple intersection over
union (IoU) values as the primary metric to compare per-
formance. Additionally, we also report performance under
a single IoU value (i.e., AP50, AP75) and for small, medium,
and large objects (i.e., APS, APM, and APL) separately. For
semantic segmentation on ADE20K, we compute the IoU
for each semantic category and then compare the mean IoU
(mIoU) averaged over all categories.
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Fig. 6: Comparison of the number of parameters for different
models on three vision tasks.

4.1.4 Implementation Details

We implement our method in Python 3.8 and PyTorch
1.8 with CUDA 11.1. All experiments are performed on
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Fig. 7: Comparison of the normalized FLOPs for different
models on three vision tasks.

NVIDIA 3090 GPUs. Our training setup for ImageNet-1K
largely follows [3], where we use a combination of MixUp
[54], CutMix [55], Cutout [56], and RandAugment [57] for
data augmentation; AdamW optimizer [58] with weight
decay 0.05 and an initial learning rate of 1e-3 for 300 epochs
with a batch size of 1,024. For MS COCO, we use Reti-
naNet [59] as the detector. Following standard practice, we
initialize the model with ImageNet-1K pretrained weights;
we use the AdamW optimizer with an initial learning rate
of 1e-4 and a batch size of 16 for 12 epochs. For ADE20K,
we use the Semantic FPN [60] head and AdamW optimizer
with a batch size of 32 for 40K minibatch iterations. We use
an initial learning rate of 2e-4 with the polynomial decay
schedule with a power of 0.9. It is worth noting that we
adopt the advance training recipe introduced in [61] for
training ResNet models to ensure a fair comparison. The
codes will be made publicly available.

4.2 Experimental Results

4.2.1 Reduction in Model Parameter Transmission

The number of model parameters determines the quantity
of data that the cloud server needs to send to the IoT
device during cloud-assisted training of TFormer and the
storage resources of the IoT device that the model needs to
consume. Therefore, the number of model parameters is a
measure of whether a model is suitable for cloud-assisted
deployment on IoT devices. To this end, we compare the
number of parameters that TFormer has with other models
when dealing with different vision tasks, as shown in Fig. 6.

Compared to other models, our proposed TFormer has
the smallest number of model parameters in all tasks. As
shown in Table 5, the number of model parameters of our
TFormer is only half of the number of model parameters
of ResNet50. In addition, as shown in Table 6, the amount
of model parameters that need to be transmitted is 57
million when using ResNet101, and 30 million when using
our proposed TFormer-L. Compared with ResNet101, our
proposed model saves 47% of parameters and improves AP
by 2.7%. The reasons why TFormer can reduce the number
of model parameters are i) replacing the multihead attention
layer with the hybrid layer containing a small number
of parameters and ii) introducing the PCS-FFN module,
which sparsifies the connections of neural units. Therefore,
TFormer has the smallest number of model parameters.

4.2.2 Reduction in FLOPs

Floating-point operations (FLOPs) are often used to measure
model complexity and can represent the computing power
requirements of the model for IoT devices. To this end, to
illustrate which model is more suitable for deployment on
IoT devices, we compare the FLOPs of multiple models on
different tasks, as shown in Fig. 7.

Compared to other models, our proposed TFormer has
the smallest number of FLOPs in all tasks. As shown, taking
our TFormer-M as the baseline, ResNet50 uses almost 2×
more FLOPs than our method on the image classification
task; meanwhile, our method also leads to 1.6× and 2.1×
reductions in the number of parameters and FLOPs re-
spectively when compared to the original ViT model (i.e.,
DeiT-S [3]). On object detection and semantic segmentation
tasks, our TFormer also has the fewest FLOPs compared to
the FLOPs of ResNet50 and PoolFormer-S24. The reasons
why TFormer can reduce the number of FLOPs are i) the
introduction of the hybrid layer and ii) the introduction of
the PCS-FFN module. Therefore, TFormer has the smallest
number of FLOPs and is more suitable for deployment on
resource-constrained IoT devices.

4.2.3 Performance Improvement

Image Classification: Our proposed TFormer consistently
outperforms other peer models with similar or smaller num-
bers of parameters in the image classification task. As shown
in Table 5, compared with PVT-Tiny, the top-1 accuracy
of TFormer-M is 4.6% higher than that of PVT-Tiny, and
the top-5 accuracy of TFormer-M is 2.4% higher than that
of PVT-Tiny; In addition, as shown, TFormer outperforms
models even with more parameters than it does. Compared
with PVT-Tiny, the top-1 accuracy of TFormer-S is 1% higher
than that of PVT-Tiny, and the top-5 accuracy of TFormer-S
is 0.5% higher than that of PVT-Tiny. Compared with PVT-
Small, the top-1 accuracy of TFormer-L is 0.8% higher than
that of PVT-Small, and the top-5 accuracy of TFormer-L is
0.4% higher than that of PVT-Small.

Object Detection: Our proposed TFormer consistently out-
performs other peer models with a similar or slightly
larger number of parameters in the object detection task.
As shown in Table 6, TFormer-L achieves 2.3 higher AP
points than PoolFormer-S24 while using a similar number
of parameters. TFormer-M achieves 3.5 higher AP points
than PoolFormer-S12 while using a similar number of pa-
rameters. In addition, TFormer-S achieves 0.9 higher AP
points than PoolFormer-S12 while using a smaller num-
ber of parameters. With only half the number of model
parameters of ResNet101, the AP point of TFormer-L is
2.7 higher than that of ResNet101. In addition, we also
provide a qualitative visualization between TFormer-M and
the compared models in Fig. 9.

Semantic Segmentation: Our proposed TFormer consis-
tently outperforms other peer models with a similar number
of parameters in the semantic segmentation task. As shown
in Table 7, compared with PoolFormer-S24, our TFormer-
M achieves a 0.5% higher mIoU and a reduced number of
5M parameters, and our TFormer-L achieves a 1.5% higher
mIoU while using a similar number of parameters. Note that
compared with PoolFormer-S36, our TFormer-L reduces the
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Fig. 8: Accuracy and model size on different tasks of our TFormer compared to the state-of-the-art.

TABLE 5: Image classification performance on ImageNet-1K [46]. Savings (ratio) measure the parameter or FLOPs ratios
between compared approaches and our TFormers.

Model #Params (M) Savings (ratio) #MAdds (G) Savings (ratio) Top-1 Acc (%) Top-5 Acc (%)

ResNet18 [42] 12 1.4× 1.8 1.5× 70.6 89.6
PVT-Tiny [51] 13 1.5× 1.9 1.6× 75.1 92.4
ResMLP-S12 [52] 15 1.8× 3.0 2.5× 76.6 93.2
TFormer-S (ours) 8.4 1.0× 1.2 1.0× 76.1 92.9

DeiT-S (0.3-12) [38] 15 1.1× 3.1 1.4× 78.6 94.4
Swin-Mixer-T/D24 [5] 20 1.4× 4.0 1.8× 79.4 94.6
ResNet50 [42] 26 1.9× 4.1 1.9× 79.8 94.5
DeiT-S [3] 22 1.6× 4.6 2.1× 79.8 95.0
PVT-Small [51] 25 1.8× 3.8 1.7× 79.8 95.0
TFormer-M (ours) 14 1.0× 2.2 1.0× 79.7 94.8

ResMLP-S24 30 1.5× 6.0 1.9× 79.4 79.4
Swin-Mixer-T/D6 23 1.2× 4.0 1.3× 79.7 94.9
PoolFormer-S24 21 1.1× 3.6 1.1× 80.3 95.0
TFormer-L (ours) 20 1.0× 3.2 1.0× 80.6 95.4

TABLE 6: Object detection performance on MS COCO [49].

Model #Params (M) AP AP50 AP75 APS APM APL

ResNet18 [42] 21 31.8 49.6 33.6 16.3 34.3 43.2
PoolFormer-S12 [53] 22 36.2 56.2 38.2 20.8 39.1 48.0
TFormer-S (ours) 18 37.1 56.9 39.5 20.8 40.2 49.7

ResNet50 [42] 38 36.3 55.3 38.6 19.3 40.0 48.8
PoolFormer-S24 [53] 31 38.9 59.7 41.3 23.3 42.1 51.8
TFormer-M (ours) 24 39.7 59.9 42.4 23.8 43.3 52.9

ResNet101 [42] 57 38.5 57.8 41.2 21.4 42.6 51.1
PoolFormer-S36 [53] 41 39.5 60.5 41.8 22.5 42.9 52.4
TFormer-L (ours) 30 41.2 61.7 43.9 24.2 44.5 55.6

number of model parameters by 11 M at the expense of 0.2%
mIoU. A qualitative comparison is provided in Fig. 10.

Discussion. Fig. 8 clearly shows the performance and model
size of TFormer and other models on different tasks. As
shown, on image classification, object detection, and se-
mantic segmentation tasks, the proposed TFormer consis-
tently outperforms a wide range of existing alternatives
with similar or fewer parameters. The main reasons are
two-fold. Firstly, it is because TFormer includes different
types of pooling (i.e., max-pooling and avg-pooling) with
different kernel sizes (i.e., 3 × 3, 5 × 5, 7 × 7, 9 × 9,
11 × 11). Different types of pooling can extract multiple
types of features, and pooling of different kernel sizes can
extract multiple-scale features. From [32], we observe that,

multitype and multiscale features contribute to the high
performance of TFormer. In addition, the introduction of
the pooling operation and channel splitting greatly reduces
the number of model parameters in TFormer. Secondly, it
is because of the introduction of group convolution and
shuffle channel techniques. The group convolution greatly
reduces the number of model parameters, and the shuffle
channel enables the features of different groups to flow
fully. Therefore, TFormer proposed in this paper improves
the performance of the model while reducing the number
of model parameters, which is of great significance in the
context of the Internet of Everything for applications that
use the cloud server to assist IoT device deployment and
update vision transformer models.
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Fig. 9: Qualitative comparison on MS COCO dataset. From left to right, we show the example predictions from the ground
truth, ResNet50, PoolFormer-S24, and TFormer-S24. The predicted labels with confidence scores are annotated at the top-
left corners of the detection boxes.

In addition, three model variants give more options
for IoT devices with different resource configurations. For
example, for smart cameras with very limited computing
and storage resources, TFormer-S can be preferentially con-
figured, and for mobile phones with relatively sufficient
resources, TFormer-L can be preferentially selected.

5 CONCLUSION AND FUTURE WORK

This paper presented a transmission-friendly vision trans-
former, namely, TFormer, for IoT devices. In TFormer, a hy-
brid layer consisting of a nonlearnable layer and a pointwise
convolution and a partially connected and shuffled feedfor-
ward network (PCS-FFN) consisting of group convolution
and channel shuffle techniques is introduced to reduce
the number of parameters and floating-point operations

(FLOPs). In addition, the proposed hybrid layer can extract
multitype and multiscale features of the data, enabling
TFormer to achieve high performance. Experimental results
show that TFormer can effectively improve the performance
of the model on multiple tasks while reducing the number
of model parameters and FLOPs.

In future work, we plan to deploy TFormer on IoT
devices (e.g., Raspberry Pi 4B). Because IoT devices have
the characteristics of dynamically changing available re-
sources, to provide uninterrupted services, it is necessary to
deploy multiple TFormers of different capacities. However,
deploying multiple TFormers is constrained by the limited
resources of the IoT device. To this end, we are going to
study deploying multiple TFormers in a model parameter
sharing method to save IoT device storage resources. More-



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

Fig. 10: Qualitative comparison on ADE20K dataset. We visualize ground truth, ResNet50, PoolFormer-S24, and TFormer-
24 from left to right.

TABLE 7: Semantic segmentation performance on ADE20K
[50].

Model #Params (M) mIoU (%)

ResNet18 [42] 16 32.9
PVT-Tiny [51] 17 35.7
PoolFormer-S12 [53] 16 37.2
TFormer-S (ours) 12 37.3

ResNet50 [42] 29 36.7
PVT-Small [51] 28 39.8
PoolFormer-S24 [53] 23 40.3
TFormer-M (ours) 18 40.8

ResNet-101 [42] 48 38.8
PVT-Medium [51] 48 41.6
PoolFormer-S36 [53] 35 42.0
TFormer-L (ours) 24 41.8

over, in addition to reducing the number of parameters, we
will also explore ways to reduce the amount of data and
better processing methods.
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