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Below we provide additional qualitative and quantitative
analysis for ProTéGé that we could not include in the main
paper due to space constraints but was ready at the time of
submission. Sec 1 provides a further discussion on hyper-
parameter selection related to the maximum duration of text
query Q, the maximum number of video clips M , and batch
size B used during untrimmed pretraining. Next, Sec 2 pro-
vides visual analysis for ProTéGé both for pretraining and
downstream Video Temporal Grounding (VTG), and finally,
Sec 3 provides additional implementation details.

1. Additional Discussion
Maximum duration of text query Q. Since our method
is not limited to a single subtitle as a text query and uses
aggregated subtitles by concatenating them, we discuss the
effect of maximum query length in terms of duration in Ta-
ble 1. We can observe that a maximum query duration of
50 seconds gives the best performance. We believe shorter
durations limit the generalization of the method to down-
stream tasks with diverse query sizes. Meanwhile, a du-
ration of 100 seconds is sub-optimal because by then, the
query has too much information by having as many as 25
subtitles. This reduces its usefulness to precisely localize
and be associated with a particular video segment.

Table 1. Effect of maximum duration of text query Q.

Max duration of Q (s) R@0.5 R@0.7

10 52.59 27.48
20 50.19 26.83
50 53.26 30.38
100 48.27 27.73

⋆Authors with equal contribution.
This work was done as Lan Wang’s internship project at Microsoft.

Maximum number of video clips M . The video dura-
tion, in terms of the number of clips M , can play a signif-
icant role in the performance. As shown in Table 2, using
at most M = 15 or M = 30 video clips significantly re-
duces R@0.5 by 5.28% and 7.07% respectively compared
to using M = 60. This suggests that using long untrimmed
videos makes the pretrained features more favorable for
downstream VTG tasks. We also find that increasing M
from 60 to 120 does not provide a significant improvement.
Larger M results in more fine-grained proposals which are
quadratically more in number. We believe that this increases
task complexity making the training more challenging while
also requiring longer training time as well as higher GPU
memory. So for compute efficiency, we use M = 60 in our
experiments.

Table 2. Effect of maximum number of video clips M .

Max video clips M R@0.5 R@0.7

15 46.19 25.14
30 47.98 25.59
60 53.26 30.38
120 53.24 30.60

Table 3. Effect of batch size B during pretraining.

Batch size B R@0.5 R@0.7

512 50.67 29.11
1024 52.51 30.86
2048 53.26 30.38
4096 51.74 28.69



Batch size B during pretraining. The batch size B dur-
ing untrimmed pretraining of ProTéGé decides the number
of negative samples in Linter and influences model train-
ing. Table 3 shows the results for using different batch sizes
for pretraining. We find that using B = 2048 gives the
overall best performance and having smaller or larger batch
size leads to worse performance. We believe that having
a smaller batch size can cause the model to have an insuf-
ficient number of negative samples while having a larger
batch size could lead to a high number of false negatives.
Both of these scenarios can impede model training [8].

Effectiveness of VT-SGM. We directly incorporate our
proposed grounding module (VT-SGM) into pretraining to
leverage untrimmed videos for VTG. While downstream
VTG methods like 2D-TAN [9] inspire VT-SGM, our mod-
ule’s design is tailored to perform VTG-based untrimmed
pretraining. To illustrate the effectiveness of VT-SGM, we
replace VT-SGM in ProTéGé with the original 2D-TAN and
compare the performance on Charades-STA and TACoS on
fully-supervised VTG as the downstream task in Table 4.
We can observe that using VT-SGM leads to 2.7%/4.0%
higher R@0.5/R@0.7 on Charades and 1.8%/1.8% higher
R@0.3/R@0.5 on TACoS than original 2D-TAN module.
This further validates the benefit of the novel design of our
VT-SGM module.

Table 4. Comparison of using VT-SGM vs. original 2D-TAN mod-
ule in VTG pretraining. VT-SGM significantly outperforms origi-
nal 2D-TAN module on both Charades-STA and TACoS on down-
stream task for Fully-supervised VTG.

Grounding
Module

Charades-STA TACoS
R@0.5 R@0.7 R@0.3 R@0.5

2D-TAN [9] 50.53 26.40 41.88 29.36
VT-SGM 53.26 30.38 43.63 31.39

Evaluation on more VTG datasets. Table 6 and 5
show results on TACoS [5] and QVHighlights [2] using
ProTéGé with Moment-DETR and 2D-TAN as downstream
methods for fully-supervised VTG. We can observe that
untrimmed pretraining (Row 3) leads to 2.1%/4.2% bet-
ter R@0.5/R@0.7 on QVHighlights and 1.8%/1.2% better
R@0.3/R0.5 on TACoS vs. our baseline of ProTéGé with-
out untrimmed pretraining (Row 2) using the same extra
video data, which empirically validates our untrimmed pre-
training algorithm for VTG. Moreover, compared with the
baselines, ProTéGé also shows superior performance.

Evaluation on VidSitu (Video Event Relation Under-
standing). To demonstrate the effectiveness of ProTéGé

Table 5. Evaluation on QVhighlight in Fully-supervised VTG
downstream setting. ProTéGé (Row 3) significantly outperforms
both Moment-DETR (Row 1) and the baseline without untrimmed
pretraining (Row 2).

Method R@0.5 R@0.7

Moment-DETR [2] 53.94 34.84
ProTéGé w/o Untrimmed 53.53 31.91
ProTéGé 55.56 36.11

Table 6. Evaluation on TACoS in Fully-supervised VTG down-
stream setting. ProTéGé (Row 3) significantly outperforms both
LocVTP (Row 1) and the baseline without untrimmed pretrain-
ing (Row 2).

Method R@0.3 R@0.5

LocVTP [1] 41.6 28.9
ProTéGé w/o Untrimmed 41.76 30.01
ProTéGé 43.63 31.19

on understanding movie data, we further evaluate ProTéGé
on VidSitu [6] which is a large-scale dataset contain-
ing diverse videos from movies depicting complex situa-
tions. Specifically, we choose the event relation classifi-
cation as our downstream task and Vid TxEnc [6] as the
downstream method. Table 7 shows macro-average Accu-
racy (Macro-Acc) on the validation set. We can observe that
ProTéGé (Row 3) exceeds both Vid TxEnc (Row 1) and our
baseline of ProTéGé without untrimmed pretraining (Row
2), further validating its generalization ability on movie data
and complex situation understanding tasks.

Table 7. Evaluation on VidSitu. ProTéGé (Row 3) significantly
outperforms both Vid TxEnc (Row 1) and the baseline without
untrimmed pretraining (Row 2).

Method Macro-Acc

Vid TxEnc [6] 34.54
ProTéGé w/o Untrimmed 41.81
ProTéGé 45.47

2. Additional Qualitative Analysis
Fig 1 and Fig 2 show the similarity score proposal grid on

videos from the Charades-STA and ActivityNet-Captions
respectively for ProTéGé and a baseline setup doing pre-
training on trimmed videos. Both setups have never seen
the videos during pretraining. We feed the videos and text
queries through the video and text query encoders respec-
tively and using the output features, obtain the cosine sim-
ilarity scores for the 2D proposal grid without doing any



finetuning on the videos. The cyan dot in the grid in the fig-
ures denotes the location of the ground truth proposal for the
corresponding query. We can observe that ProTéGé, having
been trained on untrimmed videos, can clearly learn to ex-
hibit higher video-text similarity close to the ground truth
and lower similarity farther away from the ground truth. But
when trained on trimmed videos, there is no visible differ-
ence in the similarity scores across proposals. Moreover,
the range of similarity scores is also significantly larger
for ProTéGé. This shows that our method, pretrained on
untrimmed videos, can develop a more fine-grained under-
standing of the video, leading to more discriminative intra-
video features and allowing for more distinguishable video-
text similarity across different regions within a video.

Fig 3 and Fig 4 further compare the fully supervised
VTG performance on videos from the Charades-STA and
ActivityNet-Captions respectively by visualizing the local-
ization results. We use 2D-TAN [9] as the downstream
method and compare ProTéGé with a baseline setup using
features from backbone pretrained on trimmed videos. For
both datasets, ProTéGé features can ground the text query
in the video significantly more precisely while features pre-
trained on trimmed videos exhibit a large deviation from
the ground truth when grounding the query in the video.
As shown in Fig 3c, Fig 3d, Fig 4b, and Fig 4c, when the
background inside the ground truth location is visually very
similar to the outside background, the baseline makes large
errors in correctly grounding the query in the video. On
the other hand, ProTéGé, due to its ability to learn highly
discriminative features within a video via pretraining on
untrimmed videos, is able to perform significantly better
and provide accurate query localization.

3. Additional Implementation Details
Expanding on the implementation details in the main

text, we conduct our experiments using Swin-T [4] pre-
trained on Kinetics-400 and Swin-B [4] pretrained on
Kinetics-600 as the frozen trimmed video encoders, fvf .
From Table 1 of the main text, we can see significant im-
provements on both backbones using ProTéGé that high-
lights the usefulness of our method across backbones of
different sizes. We use Hugging Face’s [7] implementa-
tion of RoBERTa-base [3] for the frozen text encoder fqf .
For downstream VTG tasks, we only use the visual features
from our video encoder fv to have a fair comparison with
existing methods. For videos longer than 128s, we use a
non-overlapping sliding window of 128s for feature extrac-
tion. We resize video frames to 224 × 224 to feed to the
video encoder. Before tokenizing the text, we clean it by
lower-casing the text, de-accenting the characters, and re-
moving unicode characters, punctuation, and stop words.
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"A person takes a phone." 
(Start – 15.8s, End – 29.1s, Duration – 30.42s) 

"The person takes a paper towel from the table." 
(Start – 17.7s, End – 22.5s, Duration – 24.42s) 

"Person closed the cabinets." 
( Start – 6.1s, End – 11.3s, Duration – 11.46s) 

"Another person runs into the room."
(Start – 12.0s, End – 17.9s, Duration – 22.38s) 

(a)

(b)

(c)

(d)

Trimmed pretraining Protégé

Trimmed pretraining Protégé

Trimmed pretraining Protégé

Trimmed pretraining Protégé

Figure 1. Visualization of 2D proposal grid cosine similarity scores on unseen Charades-STA videos. For each example, the first row shows
the video frames and the second row provides the text query along with start-end timestamp and video duration. The third row compares
the 2D proposal grid cosine similarity scores of a baseline pretrained on trimmed videos (left) with ProTéGé pretrained on untrimmed
videos (right). ProTéGé features show higher variation in cosine similarity with larger similarity closer to the ground truth (cyan dot) due
to ProTéGé’s ability to learn discriminative features within a video. The grid size varies based on the length of the untrimmed video.



"Afterwards the camera pans around to a small group of men making 
plaster." (Start – 5.64s, End – 16.83s, Duration – 17.09s) 

"They play their instruments together."
(Start – 5.72s, End – 57.24s, Duration – 57.24) 

"They twirl around on the dance floor in circles.” 
( Start – 38.71s, End – 119.83s, Duration – 184.36s) 

(a)

(b)

(c)

(d)

"The man stopped walking and talked to the man lying on the tube." 
(Start – 30.84s, End – 89.57s, Duration – 146.84s) 

Trimmed pretraining Protégé

Trimmed pretraining Protégé

Trimmed pretraining Protégé

Trimmed pretraining Protégé

Figure 2. Visualization of 2D proposal grid cosine similarity scores on unseen ActivityNet-Captions videos. For each example, the first
row shows the video frames and the second row provides the text query along with start-end timestamp and video duration. The third
row compares the 2D proposal grid cosine similarity scores of a baseline pretrained on trimmed videos (left) with ProTéGé pretrained on
untrimmed videos (right). ProTéGé features show higher variation in cosine similarity with larger similarity closer to the ground truth (cyan
dot) due to ProTéGé’s ability to learn discriminative features within a video. The grid size varies as per the length of the untrimmed video.
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"A person takes a book off a shelf."
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"Person washes a glass."
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"A person walks into a bathroom holding dishes." 

Figure 3. Visualization of fully-supervised video temporal grounding results on Charades-STA dataset using 2D-TAN as the downstream
method. For each example, the first row shows the frames of the untrimmed video, the second row shows the ground truth location of
the query in the untrimmed video in green, the third row shows grounding prediction in orange from a baseline pretrained on trimmed
videos, and the fourth (final) row shows grounding prediction in blue from ProTéGé pretrained on untrimmed videos. We can observe that
ProTéGé shows more accurate grounding predictions for all examples as it is pretrained on untrimmed videos which allows ProTéGé to
develop a more fine-grained understanding of the video and learn more discriminative features within a video.
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"A young girl is outside raking a leaves out of the back yard."
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"He begins to weld a piece of metal on the ground in front of it."
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"The kids then race off on onto a course of hills."
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"He is shown pushing the pucks around with the sticks."
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Figure 4. Visualization of fully-supervised video temporal grounding results on ActivityNet-Captions dataset using 2D-TAN as the down-
stream method. For each example, the first row shows the frames of the untrimmed video, the second row shows the ground truth location
of the query in the untrimmed video in green, the third row shows grounding prediction in orange from a baseline pretrained on trimmed
videos, and the fourth (final) row shows grounding prediction in blue from ProTéGé pretrained on untrimmed videos. We can observe that
ProTéGé shows more accurate grounding predictions for all examples as it is pretrained on untrimmed videos which allows ProTéGé to
develop a more fine-grained understanding of the video and learn more discriminative features within a video.
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