
3DFaceFill: An Analysis-By-Synthesis Approach to Face Completion

(Supplementary Material)

Rahul Dey Vishnu Naresh Boddeti

Michigan State University

East Lansing, MI

{deyrahul, vishnu}@msu.edu

1. Overview

We organize the supplementary as follows. In section 2,

we give further experimental results to support our claims

regarding the effectiveness of the proposed method. This

includes additional comparisons with baselines that do not

have publicly available source codes or pre-trained models,

viz., DSA [?] and PConv [?] (2.1). We also compare our

method against UVGAN [?] in 2.2 by reformulating it for

face completion, as well as comparing the proposed Sym-

UNet against UVGAN [?] on the task of texture completion.

We present additional qualitative evaluation in 2.3, in terms

of face completion under diverse conditions (2.3A), robust-

ness to pose and illumination variants (2.3B) and general-

ization performance on in-the-wild images (2.3C). In 2.4,

we discuss the unique capability of 3DFaceFill in terms

of completing as well as synthesizing new views of partial

faces. Finally, we report additional quantitative comparison

in terms of SSIM in 2.5.

In section 3, we perform further ablative analysis of the

different components of 3DFaceFill. We study the effect

of the proposed iterative refinement procedure in 3.1. We

also analyze the effect of symmetry and visualize the gating

mechanism used in Sym-UNet to control the propagation

of features, as well as the uncertainty map that controls the

magnitude of various training losses in 3.2. Finally, we give

further implementation details including the network archi-

tectures, loss functions, training and computational com-

plexity of our method in section 4.

2. Experimental Results

2.1. Comparison against PConv [?] and DSA [?]

PConv [?] and DSA [?] have not released publicly avail-

able source codes or pre-trained models. Hence, to compare

against them, we obtained face completions for a small set

of 14 partial images through correspondence with the re-

PSNR (↑) SSIM (↑) LPIPS [?] (↓)

DSA [?] 28.6205 0.9375 0.0436

PConv [?] 29.3067 0.9479 0.0379

3DFaceFill 31.8823 0.9615 0.0335

Table 1: Quantitative comparison of the proposed

3DFaceFill vs. PConv [?] and DSA [?] on a small set of

completed images obtained from the authors.

spective authors1. We show qualitative results in Fig. 1. One

can observe that while PConv [?] and DSA [?] tend to de-

form the facial components under certain conditions leading

to geometric and photometric artifacts, 3DFaceFill is free of

such artifacts and generates more realistic completions. In

addition, we provide quantitative metrics on this small set in

Table 1, where 3DFaceFill reports better PSNR, SSIM and

LPIPS [?] metrics over both the baselines.

2.2. Comparison against UVGAN [?]

The proposed face completion method, 3DFaceFill, has

three parts, (i) disentangling 2D image into factors such as

3D pose, 3D shape, albedo and illumination (IL), (ii) en-

forcing symmetry in UV albedo (SYM), and (iii) iterative

refinement of face completion through progressively more

accurate 3D pose and shape estimation (IR). UVGAN [7] on

the other hand, (i) performs completion of the missing tex-

ture in the UV-representation due to self-occlusion instead

of completing a partial face image itself, (ii) unlike 3DFace-

Fill, does not disentangle texture further into albedo and il-

lumination, (iii) does not impose symmetry prior on the UV

texture, and (iv) uses 3DMM on a fully visible face image

rather than a partial image to obtain texture. Since no source

code or pretrained model of UVGAN is available, we eval-

uate these differences in two ways: (A) by reformulating

1The images provided by PConv’s authors were obtained from a model

trained on 512x512 sized images, vs. 256x256 for the other baselines in-

cluding 3DFaceFill.

Missing eye-brows

Blurred eyes and nose,

Illumination contrast

Blurry cheeks

Asymmetric eye-gaze

Blurry deformation near

mouth and asymmetric

eye-gaze

Input DSA [?] PConv [?] 3DFaceFill Ground truth

Figure 1: Qualitative evaluation of 3DFaceFill vs. PConv [?] and DSA [?] on a subset of images received from the

respective authors. The text on the left mention the specific deformities in the baselines (blurriness, artifacts, asymmetry and

other geometric deformations), that is not present in the completions by 3DFaceFill.

UVGAN for face completion, and (B) comparing UVGAN

with our Sym-UNet model on their publicly released texture

dataset. We now present the two evaluations.

A: Comparison with UVGAN [?] Reformulated for Face

Completion

To simulate UVGAN [?] for face completion, we re-

move the illumination disentanglement (IL), symmetry loss

(SYM) and iterative refinement (IR) from 3DFaceFill (re-

fer to Fig. 2). We call the variant with SYM as UVGAN-

Sym, and the variant with both IL and SYM as 3DFaceFill-

NoIR. Adding IR makes for our full model 3DFaceFill.

We compare the above-mentioned variants for face com-

pletion on the CelebA [?] dataset and report the quanti-

tative and qualitative results in Fig. 2. One can observe

that 3DFaceFill significantly outperforms UVGAN as well

as the other variants both quantitatively as well as qualita-

tively. Further, we can see that introducing the symmetry

loss (SYM) in UVGAN-Sym hurts performance since, un-

like UV-albedo, UV-texture is not inherently symmetric in

faces because of the entangled illumination. Completion on

the disentangled albedo (IL) instead improves performance

in 3DFaceFill-NoIR. Lastly, iterative refinement (IR) further

improves completion on top of IL and SYM. This demon-

strates the effectiveness of the novelties that 3DFaceFill in-

troduces over UVGAN [?].

B: Sym-UNet vs. UVGAN on Texture Completion

Method IL SYM IR PSNR (↑) LPIPS (↓)
UVGAN ✗ ✗ ✗ 28.719 0.0383

UVGAN-Sym ✗ ✓ ✗ 28.621 0.0392

3DFaceFill-NoIR ✓ ✓ ✗ 29.959 0.0334

3DFaceFill ✓ ✓ ✓ 30.492 0.0326

Input UVGAN UVGAN-Sym 3DFaceFill Ground truth

Figure 2: Comparing UVGAN [?] reformulated for face completion vs. 3DFaceFill.

In this evaluation, we trained our Sym-UNet model on

the UVDB-MPIE texture dataset released by the authors of

UVGAN [?]. We split the dataset into a 80:20 train-test

split and resized the texture maps to 192 × 256 for train-

ing. Similar to UVGAN, we do not include the symme-

try loss because of the presence of illumination variations

and the availability of synthetically completed texture maps,

which reduces the utility of symmetry-loss. The rest of the

Sym-UNet is retained as such. On the test set, we report a

PSNR of 30.1 (vs. UVGAN’s 25.8) and SSIM of 0.937 (vs.

UVGAN’s 0.886). Further, we show qualitative results in

Fig. 3, where we see that our completed textures resemble

the ground truth closely (we do not have the corresponding

completions by UVGAN). Thus, our proposed Sym-UNet

network is comparatively better suited for UV-completion

than the network used in UVGAN [?].

2.3. Further Qualitative Evaluation

A: Diverse Conditions

We present further qualitative comparison of face com-

pletion by the proposed 3DFaceFill vs. DeepFillv2 [?] and

PIC [?] under diverse conditions. Fig. 4 show the qualita-

tive comparison on faces with dark complexion, challeng-

ing poses and illumination contrast. Fig. 5 shows examples

where baselines tend to introduce asymmetry in eye-gaze

or deform various face components, such as, nose, mouth,

etc. In all these cases, 3DFaceFill generates more realistic

completions while preserving the visible illumination con-

trast and bilateral symmetry, because of the disentangled

completion of albedo and explicit enforcement of 3D shape,

pose, illumination and symmetric priors.

B: Robustness Across Pose and Illumination Variations

We present further cross-dataset evaluation on the pose

and illumination varying MultiPIE dataset [?] by splitting

the dataset into two subsets: (1) a pose varying subset with

constant frontal illumination and expression, referred to as

MultiPIE:Pose and (2) an illumination varying subset with

constant frontal pose and expression, referred to as Multi-

PIE:Illu. Table 2 reports the PSNR, SSIM and LPIPS [?]

metrics for all the methods on these two splits. It can be

seen that 3DFaceFill significantly outperforms the baselines

in both the splits. Further, we show more example comple-

tions by 3DFaceFill vs. the baselines DeepFillv2 [?] and

PIC [?] in Fig. 6 (for Pose) and Fig. 7 (for Illumination),

respectively. From Fig. 6, one can observe that the base-

lines tend to generate fuzzy and deformed faces for extreme

poses while 3DFaceFill generates sharper and geometry-

preserving completions. And, in the illumination-varying

case, DeepFillv2 [?] tends to generate artifacts and PIC [?]

tends to generate asymmetric completions for extreme illu-

mination, whereas the completions by 3DFaceFill are free

of such artifacts and preserve illumination contrast and sym-

metry.

C: Generalization Performance on In-the-Wild Images

downloaded from the Internet

To compare the generalization performance of different

methods, we evaluate face completion on a small dataset

of ∼ 50 in-the-wild face images downloaded from the in-

ternet2 (referred to as Internet). We report the quantitative

metrics in Table 2, where one can see significant margins

between 3DFaceFill and the closest baselines across all the

three metrics, demonstrating the better generalization per-

formance of our proposed method. Fig. 8 shows qualitative

comparison on a small sample where 3DFaceFill generates

more realistic completions, thanks to the explicit imposition

of 3D face priors. This shows that the principles behind

3DFaceFill can improve the generalization performance of

2Source: https://unsplash.com/s/photos/face

https://unsplash.com/s/photos/face

(a) Input (b) 3DFaceFill (c) Groundtruth

Figure 3: Qualitative evaluation of texture completion by the proposed Sym-UNet on the UVDB-MPIE dataset [?].

Dataset Metric GFC [?] SymmFC [?] DeepFillv2 [?] PIC [?] 3DFaceFill

MultiPIE:Pose

PSNR (↑) 24.7557 24.7177 26.3385 26.4301 27.8226

SSIM (↑) 0.9187 0.9289 0.9383 0.9451 0.9482

LPIPS (↓) 0.0822 0.0692 0.0527 0.0471 0.0409

MultiPIE:Illu

PSNR (↑) 23.5749 24.4813 26.4981 26.2938 27.8865

SSIM (↑) 0.8676 0.8618 00.8718 0.8825 0.8935

LPIPS (↓) 0.1232 0.0747 0.0640 0.0540 0.0484

Internet

PSNR (↑) 24.1775 24.2829 26.4957 25.6326 28.8463

SSIM (↑) 0.9042 0.9168 0.9293 0.9317 0.9526

LPIPS (↓) 0.0913 0.0625 0.0493 0.0466 0.0390

Table 2: Further quantitative evaluation of 3DFaceFill vs. the baselines on the pose-varying (MultiPIE:Pose) and illumination

varying (MultiPIE:Illu) subsets of the MultiPIE dataset [?] and in-the-wild images downloaded from the Internet.

DARKER COMPLEXION

LARGE POSES

ILLUMINATION CONTRAST

Input DeepFillv2 [?] PIC [?] 3DFaceFill (Ours) Ground Truth

Figure 4: Qualitative evaluation under diverse conditions (complexion, pose, illumination).

ASYMMETRY IN EYE-GAZE

SHAPE DEFORMATIONS

Input DeepFillv2 [?] PIC [?] 3DFaceFill (Ours) Ground Truth

Figure 5: Qualitative evaluation under diverse conditions (eye-gaze, shape).

In
p
u
t

D
ee

p
F

il
lv

2
[?

]
P

IC
N

et
[?

]
3
D

F
ac

eF
il

l
G

ro
u
n
d

T
ru

th
In

p
u
t

D
ee

p
F

il
lv

2
[?

]
P

IC
N

et
[?

]
3
D

F
ac

eF
il

l
G

ro
u
n
d

T
ru

th

Figure 6: Qualitative evaluation of 3DFaceFill vs. baselines DeepFillv2 [?] and PIC [?] on the pose-varying MultiPIE:Pose

split [?]. While the baselines tend to generate blurred and deformed faces in extreme poses, 3DFaceFill is pose-robust and

generates more accurate completions across a range of pose.

In
p
u
t

D
ee

p
F

il
lv

2
[?

]
P

IC
N

et
[?

]
3
D

F
ac

eF
il

l
G

ro
u
n
d

T
ru

th
In

p
u
t

D
ee

p
F

il
lv

2
[?

]
P

IC
N

et
[?

]
3
D

F
ac

eF
il

l
G

ro
u
n
d

T
ru

th

Figure 7: Qualitative evaluation of 3DFaceFill vs.the baselines DeepFillv2 [?] and PIC [?] on the illumination varying Mul-

tiPIE:Illu split [?]. While the baselines tend to generate artifacts in extreme illuminations, 3DFaceFill generates completions

that look geometrically accurate and preserve the illumination contrast (notice (i) the illumination contrast in cols. 2,3,5,6

(b), and (ii) assymetric eye-brows in cols. 1,2,3,5,6 (b) by the baselines.)

Input DeepFillv2 [?] PIC [?] 3DFaceFill (Ours) Ground Truth

Figure 8: Qualitative evaluation (of generalization performance) on the Internet downloaded images.

image completion approaches on structured objects such as

faces.

2.4. 3D View Synthesis of Masked Faces

3DFaceFill has a unique advantage over other face com-

pletion approaches, in that unlike existing methods, our

method can not only complete partial faces, but also render

new views of the completed face from different view-points.

In Fig. 9, we show this through examples of face views

rendered from five different viewpoints by completing the

missing albedo and self-occluded regions in the masked

faces.

2.5. Evaluation in terms of SSIM

In addition to the PSNR/LPIPS vs. mask ratio analy-

sis reported in the main paper, we also report similar com-

parison in terms of SSIM vs. mask ratio on the CelebA

[?], CelebA-HQ [?] and MultiPIE [?] datasets in Fig. 10a,

Fig. 10b and Fig. 10c, respectively. 3DFaceFill consistently

out-performs the baselines in terms of SSIM too for all the

mask ratios. Moreover, it can be observed that the compar-

ative gain by 3DFaceFill vs. the closest baseline increases

as the mask ratio increases, which we attribute to the advan-

tage of using explicit 3D priors for completion.

3. Analysis

3.1. Iterative Refinement

As explained in Main:Sec 3.2, we adopt an iterative re-

finement procedure whereby 3D factorization aids in com-

pletion and vice versa. We show heatmap-visualization of

the difference between the pre-blended completions at itera-

(a) Input (b) Completed and synthesized face views (c) Ground Truth

Figure 9: 3D Face View Synthesis. 3DFaceFill has the unique ability to not just complete masked faces realistically, but also

synthesize new views from them.

0 10 20 30 40 50 60 70 80 90
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02 3DFaceFill (Ours)
PICNet [46]
DeepFillv2 [41]
SymmFCNet [18]
GFC [19]

Mask/Face (%)

S
S

IM

(a) CelebA dataset [?]

0 10 20 30 40 50 60 70 80 90

0.85

0.9

0.95

1

1.05
3DFaceFill (Ours)
PICNet [46]
DeepFillv2 [41]
SymmFCNet [18]
GFC [19]

Mask/Face (%)

S
S

IM

(b) CelebA-HQ dataset [?]

0 10 20 30 40 50 60 70 80 90
0.8

0.85

0.9

0.95

1

1.05 3DFaceFill (Ours)
PICNet [46]
DeepFillv2 [41]
SymmFCNet [18]
GFC [19]

Mask/Face (%)

S
S

IM

(c) MultiPIE dataset [?]

Figure 10: Quantitative evaluation of 3DFaceFill vs. the baselines in terms of SSIM. 3DFaceFill consistently and significantly

outperforms the baselines across all the Mask-to-Face area ratios and across all the datasets viz. CelebA [?], CelebA-HQ [?]

and MultiPIE [?].

Input Ground Truth Iter1 Iter1 - GT Iter2 Iter2 - GT Iter2 - Iter1

Figure 11: Effect of Iterative Finetuning. We show raw completions (without blending) at iterations 1 and 2 along with

the difference heatmaps. Note the improvements in Iter2 over Iter1 and the corresponding heatmap activations around eyes,

eye-brows and other edges on the face.

Input Ground Truth NoSym Model Full Model Full-NoSym

Figure 12: Effect of using Symmetry. The full model includes Sym-UNet and symmetry loss (during training) and can copy

symmetric features when available. The absolute difference heatmaps (Full-NoSym) shows that most difference is coming

from components such as eyes, eye-brows, etc.

tions 1 and 2 in Fig. 11. A relative comparison of the distri-

bution of Iter1-GT and Iter2-GT shows that Iter2 is closer to

the GT (ground truth) image, which indicates improved 3D

pose estimation in the second iteration. The visualization

of Iter2-Iter1 shows that these differences are manifesting

at the detailed face components such as eyes, nose, etc., as

well as the masked regions.

3.2. Effect of Symmetry

We further analyze the advantages of enforcing

symmetry-consistency. We show completions by the Full

model (Sym-UNet + symmetry loss) and the NoSym model

(UNet) in Fig. 12. The completions by the NoSym variant

look slightly asymmetric because of blurry and symmetry-

agnostic completion around the eyes and other masked re-

gions whereas our Full model leverages symmetry to gen-

erate sharper and symmetry-consistent completions. This

can be further visualized in the Full-NoSym difference

heatmaps shown in the figure that show that the difference

is mostly concentrated around the eyes and eye-brows and

spreads further through the masked regions.

Symmetry Gating Activation: We further visualize the in-

termediate gating maps used in our model that control the

flow of information in the network (ref Fig. 13). We visual-

ize two (out of 64) gating activations (1st - Gate1 and 33rd

- Gate2) from the second layer of our Sym-UNet network.

As can be seen in Fig. 13, while Gate1 activates for the

visible regions in the input albedo, Gate2 activates for the

masked regions to propagate useful features from the hori-

zontally flipped albedo map to the symmetric side. This en-

ables Sym-UNet to leverage and maintain facial symmetry

for inpainting. We also visualize the estimated uncertainty

map (σ) in Fig. 13 that is learned by the inpainter G in an un-

supervised way. Note that the uncertainty is usually higher

(a) Input (b) Input Albedo (c) Gate 1 (d) Gate 2 (e) Uncertainty σ (f) Output Albedo

Figure 13: Visualizing the Gating Activations and the Uncertainty-Maps. Observe that, while Gate 1 activates for the

visible regions, Gate 2 activates for the masked regions to propagate useful features from the visible symmetric parts to

their masked counterparts. The uncertainty map captures the model’s uncertainty around the masked regions and the facial

components such as the eyes, thus incurring higher losses for these regions. (Note: higher values are represented by warmer

(redish) colors in the gating and uncertainty heatmaps).

around important facial components like the eyes and the

masked regions, which increases the loss incurred in these

regions.

4. Implementation Details

In this section, we provide further implementation de-

tails regarding the proposed approach. In sub-section 4.1,

we give detailed network architectures for the modules used

in 3DFaceFill. In sub-section 4.2, we provide details of the

loss functions used to train the 3D factorization module.

Lastly, we give full training details of the different com-

ponents in sub-section 4.3.

4.1. Network Architectures

We report the detailed network architectures for the

3DMM Encoder E , the Albedo Decoder DA, the Sym-UNet

module, the PyramidGAN discriminator and the Face Seg-

menter S in Tables 3 to 7. Our network architectures for

the 3DMM modules are based on the architectures used

in [?] for the corresponding modules. Insipired by Miyato

et al. [?], we use spectral normalization in all our convolu-

tion layers. The abbreviated operators used are defined as

follows:

• Conv(cin, cout, k, s, p): 2D convolution with cin input

channels, cout output channels, kernel size k, stride s

and padding p.

• Deconv(cin, cout, k, s, p): 2D transposed convolution

(deconvolution) with cin input channels, cout output

channels, kernel size k, stride s and padding p.

• GN(n): Group normalization [?] with n groups

• ELU: Exponential linear unit [?] activation,

LReLU(α): Leaky ReLU [?] with a negative

slope of α

• ResUnit(cin, cout, k, s, p): Residual unit [?] with cin
input channels, cout output channels, kernel size k,

stride s, padding p with group normalization [?] and

ELU activation [?]

• SigGNConv(cin, cout, k, s, p): 2D convolution with

cin input channels, cout output channels, kernel size

k, stride s and padding p followed by group normal-

ization [?] and sigmoid activation

• SigGNDeconv(cin, cout, k, s, p): 2D transposed con-

volution with cin input channels, cout output channels,

kernel size k, stride s and padding p followed by group

normalization [?] and sigmoid activation

Table 3: Network architecture of the 3DMM Encoder E .

The Pose1 corresponds to the scale, Pose2:4 correspond

to the yaw, roll and pitch angles normalized by π/2 and

Pose5:6 correspond to the X and Y translations normalized

by the input image size.

3DMM Encoder Output size

Image → SpectralConv(3, 32, 7, 2, 3) + GN(8) + ELU 112x112

SpectralConv(32, 64, 3, 1, 1) + GN(16) + ELU 112x112

SpectralConv(64, 64, 3, 2, 1) + GN(16) + ELU 56x56

SpectralConv(64, 96, 3, 1, 1) + GN(24) + ELU 56x56

SpectralConv(96, 128, 3, 1, 1) + GN(32) + ELU 56x56

SpectralConv(128, 128, 3, 2, 1) + GN(32) + ELU 28x28

SpectralConv(128, 196, 3, 1, 1) + GN(48) + ELU 28x28

SpectralConv(196, 256, 3, 1, 1) + GN(64) + ELU 28x28

SpectralConv(256, 256, 3, 2, 1) + GN(64) + ELU 14x14

SpectralConv(256, 256, 3, 1, 1) + GN(64) + ELU 14x14

SpectralConv(256, 256, 3, 1, 1) + GN(64) + ELU 14x14

SpectralConv(256, 512, 3, 2, 1) + GN(128) + ELU 7x7

SpectralConv(512, 512, 3, 1, 1) + GN(128) + ELU → feats 7x7

feats → SpectralConv(512, 160, 3, 1, 1) + GN(40) + ELU 7x7

AvgPool(7,7) 1x1

Linear(160, 6) + Tanh → Pose

feats → SpectralConv(512, 160, 3, 1, 1) + GN(40) + ELU 7x7

AvgPool(7,7) 1x1

Linear(160, 27) → Illumination

feats → SpectralConv(512, 512, 3, 1, 1) + GN(128) + ELU 7x7

SpectralConv(512, 512, 3, 1, 1) + GN(128) + ELU 7x7

AvgPool(7,7) 1x1

Linear(512, 199+29) → 199 Shape + 29 Expression coefficients

feats → SpectralConv(512, 512, 3, 1, 1) + GN(128) + ELU 7x7

AvgPool(7,7) → Albedo features 1x1

Model Complexity 17.4M

• SpectralConv(cin, cout, k, s, p): 2D convolution with

cin input channels, cout output channels, kernel size k,

stride s, padding p and spectral normalization [?]

• Upsample(sh, sc): Upsamples height by sh and width

by sw using nearest neighbour interpolation.

4.2. 3DMM Module Losses

The 3DMM module is trained using a combination of

supervised, reconstruction and regularization losses:

L3DMM = λsupLsup + λrecLrec + λregLreg, (1)

where, Lsup = λSL(S, S̃) + λpL(p, p̃) +

λTL(T
uv, T̃uv) + λlmarkLlmark use the groundtruth

shape, pose, texture and 2D landmarks when available,

Lrec enforces similarity between the rendered and groun-

truth images and Lreg = λ3dsymL3dsym + λconstLconst

are regularization losses to enforce bilateral symmetry of

albedo and effective separation of shade and albedo. All

loss coefficients λ’s are set to have equal weightage for all

the loss terms. We now define these losses:

Table 4: Network architecture of the Albedo Decoder DA

that decodes the 512 dimensional Albedo features from the

3DMM Encoder E into 3× 192× 256 dimensional Albedo

representation in the UV space.

Albedo Decoder Output size

Albedo features → Upsample(3,4) 3x4

SpectralConv(512, 512, 3, 1, 1) + GN(128) + ELU 3x4

SpectralConv(512, 256, 3, 1, 1) + GN(64) + ELU 3x4

Upsample(2,2) 6x8

SpectralConv(256, 256, 3, 1, 1) + GN(64) + ELU 6x8

SpectralConv(256, 128, 3, 1, 1) + GN(32) + ELU 6x8

SpectralConv(128, 128, 3, 1, 1) + GN(32) + ELU 6x8

Upsample(2,2) 12x16

SpectralConv(128, 160, 3, 1, 1) + GN(40) + ELU 12x16

SpectralConv(160, 96, 3, 1, 1) + GN(32) + ELU 12x16

SpectralConv(96, 128, 3, 1, 1) + GN(32) + ELU 12x16

Upsample(2,2) 24x32

SpectralConv(128, 128, 3, 1, 1) + GN(32) + ELU 24x32

SpectralConv(128, 64, 3, 1, 1) + GN(16) + ELU 24x32

SpectralConv(64, 96, 3, 1, 1) + GN(24) + ELU 24x32

Upsample(2,2) 48x64

SpectralConv(96, 96, 3, 1, 1) + GN(32) + ELU 48x64

SpectralConv(96, 64, 3, 1, 1) + GN(16) + ELU 48x64

SpectralConv(64, 64, 3, 1, 1) + GN(16) + ELU 48x64

Upsample(2,2) 96x128

SpectralConv(64, 64, 3, 1, 1) + GN(16) + ELU 96x128

SpectralConv(64, 32, 3, 1, 1) + GN(8) + ELU 96x128

SpectralConv(32, 32, 3, 1, 1) + GN(8) + ELU 96x128

Upsample(2,2) 192x256

SpectralConv(32, 32, 3, 1, 1) + GN(8) + ELU 192x256

SpectralConv(32, 16, 3, 1, 1) + GN(4) + ELU 192x256

SpectralConv(16, 16, 3, 1, 1) + GN(4) + ELU 192x256

Conv(16, 3, 1, 1, 0) + Tanh → Albedo

Model Complexity 5.54M

- Shape loss is defined as:

L(S, S̃) = E

[

||fS − f̃S ||
2

2

]

,

where fS and f̃S are the output and groundtruth shape and

expression coefficients, respectively.

- Pose loss is defined as a combination of scale, translation

and rotation losses:

L(p, p̃) = λsE
[

(s− s̃)2
]

+ λtE
[

||tx,y − t̃x,y||
2

2

]

+ λrLR,

where s represents scale, tx,y represents the X and Y trans-

lations, and LR = E

[

||quat(R)− quat(R̃)||2
2

]

is the ro-

tation loss with R representing the rotation along the X, Y

and Z axes and quat(.) gives its quaternion representation.

- Texture loss is defined as:

L(Tuv, T̃uv) = E

[

||Tuv − T̃uv||2
2

]

,

where Tuv is the texture represented in UV space.

Table 5: Network architecture of the Albedo Inpainter G
(Sym-UNet). The input to the network is the concatena-

tion of the masked Albedo Auv
m and the mask Muv in the

UV space X = (Auv
m ,Muv). Outputs are the completed

Albedo Âuv and the uncertainty map σuv .

Input Layer Output

X ResUnit(4, 32, 3, 2, 1) f1
X SigGNConv(4, 32, 3, 2, 1) g1

hflip(X) ResUnit(4, 32, 3, 2, 1) f1′

hflip(X) SigGNConv(4, 32, 3, 2, 1) g1′

(f1⊙ g1, f1′ ⊙ g1′) ResUnit(64, 64, 3, 2, 1) f2
(f1⊙ g1, f1′ ⊙ g1′) SigGNConv(64, 64, 3, 2, 1) g2

f2⊙ g2 ResUnit(64, 128, 3, 2, 1) f3
f2⊙ g2 SigGNConv(64, 128, 3, 2, 1) g3
f3⊙ g3 ResUnit(128, 256, 3, 2, 1) f4
f3⊙ g3 SigGNConv(128, 256, 3, 2, 1) g4
f4⊙ g4 ResUnit(256, 512, 3, 2, 1) f5
f4⊙ g4 SigGNConv(256, 512, 3, 2, 1) g5
f5⊙ g5 ResUnit(512, 256, 3, 1, 1) f51

f5⊙ g5 SigGNConv(512, 256, 3, 1, 1) g51

f51 ⊙ g51 Upsample(2,2) x4
(x4, f4⊙ g4) ResUnit(512, 128, 3, 1, 1) f41

f51 ⊙ g51 SigGNDeconv(256, 128, 4, 2, 1) g41

f41 ⊙ g41 Upsample(2,2) x3
(x3, f3⊙ g3) ResUnit(256, 64, 3, 1, 1) f31

f41 ⊙ g41 SigGNDeconv(128, 64, 4, 2, 1) g31

f31 ⊙ g31 Upsample(2,2) x2
(x2, f2⊙ g2) ResUnit(128, 64, 3, 1, 1) f21

f31 ⊙ g31 SigGNDeconv(128, 64, 4, 2, 1) g21

f21 ⊙ g21 Upsample(2,2) x1
(x1, f1⊙ g1) ResUnit(128, 64, 3, 1, 1) f11

f21 ⊙ g21 SigGNDeconv(128, 64, 4, 2, 1) g11

f11 ⊙ g11 Upsample(2,2) x0
x0 ResUnit(64, 32, 3, 1, 1) f01

f11 ⊙ g11 SigGNDeconv(64, 32, 4, 2, 1) g01

f01 ⊙ g01 Conv(32, 4, 1, 1, 0) (Âuv, σuv)
Model Complexity 11.7M

Table 6: Network architecture of the PyramidGAN discrim-

inator D.

Input Layer Output

Igt/Î SpectralConv(3, 32, 4, 2, 1) + GN(8) + LReLU(.2) x0
x0 SpectralConv(32, 64, 4, 2, 1) + GN(16) + LReLU(.2) x1
x1 SpectralConv(64, 1, 1, 1, 0) out1
x1 SpectralConv(64, 128, 4, 2, 1) + GN(32) + LReLU(.2) x2
x2 SpectralConv(128, 1, 1, 1, 0) out2
x2 SpectralConv(128, 256, 4, 2, 1) + GN(64) + LReLU(.2) x3
x3 SpectralConv(256, 1, 1, 1, 0) out3
x3 SpectralConv(256, 512, 4, 2, 1) + GN(128) + LReLU(.2) x4
x4 SpectralConv(512, 1, 1, 1, 0) out4

Model Complexity 2.79M

- Landmark loss is defined as:

Llmark =

∥

∥

∥

∥

∥

M(p) ∗

[

S(:,d)

1

]

−U

∥

∥

∥

∥

∥

2

2

,

where M is the camera projection matrix obtained from the

pose p, d selects 68 indices corresponding to sparse 2D

Table 7: Network architecture of the face segmenter S .

(x, y) represents the concatenation of tensors x and y along

the channel dimension. The output of the network consist of

a face mask Mf , an occlusion mask Mo and a background

mask Mb.

Input Layer Output

Image ResUnit(3, 32, 3, 1, 1) x1
x1 ResUnit(32, 64, 3, 2, 1) x2
x2 ResUnit(64, 128, 3, 2, 1) x3
x3 ResUnit(128, 256, 3, 2, 1) x4
x4 ResUnit(256, 256, 3, 2, 1) x5
x5 ResUnit(256, 256, 3, 2, 1) x6

x6 Upsample(2,2) x51

(x51, x5) ResUnit(512, 256, 3, 1, 1) x52

x52 Upsample(2,2) x41

(x41, x4) ResUnit(512, 128, 3, 1, 1) x42

x42 Upsample(2,2) x31

(x31, x3) ResUnit(256, 64, 3, 1, 1) x32

x32 Upsample(2,2) x21

(x21, x2) ResUnit(128, 32, 3, 1, 1) x22

x22 Upsample(2,2) x11

(x11, x1) ResUnit(64, 32, 3, 1, 1) x12

x12 Conv(32, 3, 1, 1, 0) + Softmax2d (Mf ,Mo,Mb)
Model Complexity 7.18M

landmarks on the 3D face mesh S and U ∈ R
2×68 are the

groundtruth locations of 2D facial landmarks.

- Reconstruction is defined as:

Lrec = E

[

||I− Î||1
]

,

where I and Ĩ are the rendered and ground-truth images,

respectively.

- Albedo symmetry loss is defined as:

L3dsym(A) = ∥Auv − hflip(Auv)∥1,

where Auv is the UV representation of albedo and hflip() is

the horizontal image flipping operation.

- Albedo constancy loss is defined as:

Lconst(A) =
∑

v
uv
j

∈Ni

ω(vuv
i ,vuv

j)∥Auv(vuv
i)−

Auv(vuv
j)∥p

2
,

where Ni denotes the 4-neighborhood around vuv
i and the

weight ω(vuv
i ,vuv

j) = exp(−α∥c(vuv
i)−c(vuv

j)∥) enforce

that pixels with similar chromaticity should have similar

albedo.

4.3. Training Details

3DMM Module: We train the 3DMM module in two

stages. First, we train it using the 300W-3D dataset [?],

which has ground-truth shape, pose, texture and landmark

annotations, for 100k iterations in a supervised way. Then,

we further train it on the CelebA dataset [?] with 1/10th

of the original learning rate for further 30k iterations in an

unsupervised way, whereby we use only the reconstruction

loss, 2D landmark loss and the regularization losses. Dur-

ing this stage, we use landmark detections from HRNet [?]

as groundtruth for the landmark loss. To make the 3DMM

encoder robust to partial face images, we introduce artificial

occlusions in the training images using random rectangular

masks of varying sizes and locations. In addition, we also

use random horizontal flipping as a data augmentation. Dur-

ing inference, occlusions are removed from the input image

using the occlusion mask and passed through the 3DMM

encoder to obtain occlusion-robust factorization.

Albedo Inpainting Module: The albedo inpainting mod-

ule is trained on the CelebA dataset [?] for 30k iterations.

To obtain the UV representations of the partial albedo and

the mask, we re-project the 3D mesh obtained from the

pretrained 3DMM module on the partial image and mask,

respectively as shown in Main:Fig.3.b. On the GAN loss

(Main:Eqn.2), we update the inpainter G and the discrimi-

nator D alternatively using a ratio of 1:1. On all the other

completion losses, we update the inpainter G continuously.

Other than the random face masks, we use random horizon-

tal flipping as the only data augmentation to train the albedo

inpainter.

Face Segmentation Module: Since our method inpaints

only the facial region in the UV domain, we restrict the

image masks to lie on the face region too. For this, we

train a UNet [?] based face segmentation model that sep-

arates the face region from the background, hair and inner

mouth. The face segmenter predicts segmentation masks

for (a) the face, (b) hair and other occlusions and (c) the

background. We train the face segmentation module on the

CelebAMask-HQ dataset [?] for a total of 50k iterations us-

ing the ground-truth annotations provided by the dataset.

We use Focal loss [?] to train this module.

For all the modules, except the discriminator D, we use

the Adam optimizer with an initial learning rate of 10−4 and

a step-decay of 0.98 per epoch, while for the PyramidGAN

discriminator, we use an initial learning rate of 3 × 10−4.

The input images are first aligned to 256 × 256 using the

method suggested in [?], which is the alignment used in

the CelebA-HQ dataset. For training, we randomly crop

the images to a size of 224 × 224 while during inference

we use central crop. The full training takes 2 days on an

Intel Xeon E5-2650 machine with two NVIDIA RTX 2080

GPUs, while inference takes 0.1 sec per image on a single

GPU.

