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Abstract: 

Finite-element analysis (FEA) for structures has been broadly used to conduct stress analysis of 

various civil and mechanical engineering structures. Conventional methods, such as FEA, 

provide high fidelity solutions but require solving large linear systems that can be 

computationally intensive. Instead, Deep learning (DL) techniques can generate solutions 

significantly faster than conventional run-time analysis. This can prove extremely valuable in 

real-time structural assessment applications. Our proposed method uses deep neural networks 

in the form of convolutional neural networks (CNN) to bypass the FEA and predict high-

resolution stress distributions on loaded steel plates with variable loading and boundary 

conditions. The CNN was designed and trained to use the geometry, boundary conditions, and 

load as input to predict the stress contours. The proposed technique's performance was compared 

to Finite-Element simulations using a partial differential equation (PDE) solver. The trained DL 

model can predict the stress distributions with a mean absolute error of 0.9% and an absolute 
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peak error of 0.46% for the Von Mises stress distribution. This study shows the feasibility and 

potential of using DL techniques to bypass FEA for stress analysis applications. 

Keywords: Deep Learning; Finite Element Analysis, Stress Contours, Structural Components 

 

1. Introduction 

Stress analysis is an essential part of engineering and design. The development of various design 

systems continuously imposes higher demands on computational costs while preserving 

accuracy. Numerical analysis methods, such as structural finite element analysis (FEA), are 

typically used to conduct stress analysis of various structures. Researchers commonly use FEA 

methods to evaluate the design, safety, and maintenance, of different structures in various fields, 

including aerospace, automotive, architecture, and civil, structural systems. 

The current workflow for FEA applications includes: (i) Modeling the geometry and its 

components, which can be time-consuming based on the system complexity; (ii) Specifying 

material properties, boundary conditions, and loading; (iii) Applying a meshing strategy for the 

geometry. The time-consuming and complexity of the current FEA workflow make it impractical 

in real-time or near real-time applications, such as in the aftermath of a disaster or during extreme 

disruptive events that require immediate corrections to avoid catastrophic failures.  

Based on the steps of FEA described above, performing a complete stress analysis with 

conventional FEM has a high computational cost. To resolve this issue, we propose a deep 

learning (DL) method [1,2] to construct deep neural networks (DNN), which, once trained, allow 

to bypass FEA. This method may enable real-time stress analysis by leveraging ML algorithms. 
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DNNs can model complicated, nonlinear relationships between input and output data. Thus, 

these models help us acquire adequate knowledge for predictions of unseen problems. 

Data-driven approaches that model physical phenomena have been lauded for their significant 

and growing successes. Most recent works have included design and topology optimization [3, 

4, 5, 6], data-driven approaches in fluid dynamics [7, 8, 9, 10], molecular dynamics simulation [11, 

12, 13, 14], and material properties prediction [15, 16, 17, 18]. Also, Atalla et al. and Levin et al. 

[19, 20] have used neural regression for FEA model updating. Recently, deep learning has shown 

promise in solving conventional mechanics problems. Some researchers used deep learning for 

structural damage detection, a promising alternative to conventional structural health monitoring 

methods [21, 22, 23, 24]. Javadi et al. [25] used a typical neural network in FEA as a surrogate for 

the traditional constitutive material model. They simplified the geometry into a feature vector 

which approaches hard to generalize to more complicated cases. The numerical quadrature of the 

element stiffness matrix in the FEA on a per-element basis was optimized by Oishi et al. using 

deep learning [26]. Their approach helps to accelerate the calculation of the element stiffness 

matrix. A convolutional neural network (CNN) is a type of neural network which has shown 

great performance in several applications related to Computer Vision and Image Processing.  The 

significant learning ability of CNN is mainly due to several feature extraction stages that can 

intrinsically learn representations from the feeding data. Madani et al. [27] developed a CNN 

architecture for stress prediction of arterial walls in atherosclerosis. Also, Liang et al. [28] 

proposed a CNN model for aortic wall stress prediction. Their method is expected to allow real-

time stress analysis of human organs for a wide range of clinical applications. 
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In this work, we tackle the limitations of stress analysis using FEA. We propose an end-to-end 

deep learning method to predict the stress distribution in 2D linear elastic steel plates. The 

algorithm takes geometry, boundary conditions, and load as input and renders the Von Mises 

stress distribution as an output. We modeled steel gusset plates with loading applied at different 

edges, different boundary conditions, and varying complex geometries. A dataset initialized with 

104,448 samples with varying geometry, boundary conditions, and loads is used to train and 

evaluate the network. 

2. Background on deep learning and convolutional neural network 

Artificial intelligence (AI) developed into machine learning over time from pattern recognition 

and learning theory [29]. Samuel [30] defined machine learning as a "field of study that allows 

computers to learn without being explicitly programmed." ML algorithms can learn from data, 

and during the learning process, they build a model which will be used to make decisions or data-

driven predictions. DL is a subfield of ML which focuses on modeling hierarchical 

representations or abstractions to define higher-level concepts. The DL community is making 

significant advances in solving problems that artificial intelligence has struggled to solve for 

many years [29]. Data of high dimensions have proven to be highly useful in discovering complex 

structures. Thus, DL is practical for many domains such as government and business, precisely 

computer vision and image recognition. These methods have shown significant performance in 

image classification [31], natural sentence classification [32], and image segmentation [33]. 

DL techniques can extract features; however, we should be careful in choosing the appropriate 

technique to use when dealing with a specific task. Within these approaches, CNNs have 

demonstrated to be particularly efficient at acquiring a representation of the input data, including 
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grid type data such as matrices or images. LeCun et al. [34] proposed the initial skeleton of CNN 

to classify handwritten digits. Over the last few years, massive hierarchical image databases, GPU 

programmable units, and highly parallel computing have significantly improved CNN. CNN 

architectures developed within the years [35-37], and the performance improved remarkably as 

the networks became more complicated and deeper [38,39].  

CNN's use four concepts to enhance their performance: local connections, weight sharing, 

pooling, and multiple layers. CNN's are composed of a series of steps. The first layer is a 

convolutional layer, with units in this layer organized in feature maps. Local patches in the 

feature maps of the previous layer are connected to each unit by a set of weights known as a filter 

bank. The output of this locally weighted sum is then passed through a nonlinearity, such as a 

ReLU or other activation functions. The weights are then passed on to the pooling layer. Pooling 

layers are used to assemble semantically similar features into one. Finally, a series of 

convolutional, nonlinear, and pooling stages are stacked, followed by even more convolutional 

and fully-connected layers. A CNN uses backpropagating gradients similar to a typical deep 

network, allowing all the filter banks to be trained simultaneously [29]. 

3. Deep learning in Civil and Mechanical Engineering 

Artificial neural networks with multilayer perceptron (MLPs) have been used in civil and 

mechanical engineering for years. Researchers use ANN for structural analysis [40 41, 42], 

regression of material constitutive properties [43, 44], and materials' failure and damage [45, 46, 

47]. Gulgec et al. [48] proposed a CNN architecture to classify simulated damaged and intact 

samples and localize the damage in steel gusset plates. Modares et al. [49] studied composite 

materials to identify the presence and type of structural damage using convolutional neural 
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networks. Also, for detecting concrete cracks without calculating the defect features, Cha et al. 

[50] proposed a vision-based method based on convolutional neural networks (CNNs). An 

approach for predicting stress distribution on all layers of non-uniform 3D parts was presented 

by Khadilkar et al. [51]. More recently, Nie et al. [52] developed a CNN-based approach to predict 

the stress field in a 2D linear cantilever beam. However, these works use DL techniques for 

structural analysis. Guo et al. [53] studied the bending analysis of Kirchhoff plates of various 

shapes, loads, and boundary conditions. Itescu et al. [54] present an artificial neural network-

based collocation method for solving boundary value problems. Samaniego et al. [55] studied 

Deep Neural Networks as a technique for approximating data, and they have shown promising 

results in areas such as visual recognition. Zhuang et al. [56] propose a deep autoencoder-based 

energy method (DAEM) for the bending, vibration, and buckling analysis of Kirchhoff plates. 

Guo et al. [57] presented a modified neural architecture search method based on physics-

informed deep learning for stochastic analysis of heterogeneous porous materials. Guo et al. [58] 

proposed a deep collocation method (DCM) based on transfer learning for solving potential 

problems in non-homogeneous media. To our knowledge, this work is the first `DL-FE 

substitution' approach to perform a fast and accurate prediction of high-resolution stress 

distributions in 2D steel plates. 

4. Method 

4.1  Data Generation 

Two-dimensional steel plate structures with five edges, E1 to E5 denoting edges 1 to 5) as shown 

in Fig. 1, are considered homogeneous and isotropic linear elastic material. The 2D steel plates 

approach the geometry of gusset plates. The boundary conditions and loading angles simulate 
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similar conditions in common gusset plate structures under external loading. Gusset plates 

connect beams and columns to braces in steel structures. The behavior and analysis of these 

components are essential since various reports have observed failures of gusset plates subject to 

lateral loads [59-62]. The distributed static loads applied to the plates in this study ranged from 1 

to 5 kN with intervals of 1 kN. Moreover, loads were applied with three angles, including 𝜋/6, 

𝜋/4, and 𝜋/3, on either one or two edges of the plate. The load is decomposed to its horizontal 

and vertical direction components. Also, four types of boundary conditions are considered, as 

shown in Fig. 2, like real gusset plates' boundary conditions. All the translational and rotational 

displacements were fixed at the boundary conditions. All input variables used to initialize the 

population are shown in Table 1. The minimum and maximum range for the width and height of 

the plate are from 30 cm to 60 cm. Various geometries are generated by changing the position of 

each node in horizontal and vertical directions, as shown in Fig. 1, which led to 1024 unique 

pentagons. The material properties remain unchanged and isotropic for all samples. 

 

 
 

Fig 1. Basic schematic topology for initializing the steel plate geometries. 
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Fig 2. Different types of boundary conditions for initializing population. 

 

 
Table 1. Input variables 

 

4.1.1 Input Data  

The geometry is encoded into a 600 × 600 matrix as a single channel binary image. 0 (black) and 

1 (white) denote the outside and inside of the geometry, as shown in Fig. 3 (a). The boundary 

conditions are also represented by another 600 × 600-pixel binary images, where the constrained 

edges are defined by 1 (white) (Fig. (3b)). Moreover, each horizontal and vertical component of 

the load is encoded as one 600 × 600-pixel single-channel colored image, as shown in Fig. 3(c) and 

3(d). The magnitude of the horizontal and vertical components of the loads, after decomposition, 

varies between 0.5 kN and 4.33 kN. These loads are normalized between (100,0,0) and (255,0,0) as 

RGB colors to create a color image where the colored part represents the location and magnitude 

of the load (Fig. 3(c) and 3(d)). 

Geometry Boundary conditions Load position Load angle (degree) Load Magnitude (kN) 

Pentagon E2 E5, E4, E4 E5 30, 45, 60 1, 2, 3, 4, 5 

Pentagon E2 E3 E5 30, 45, 60 1, 2, 3, 4, 5 

Pentagon E1 E2 E4 30, 45, 60 1, 2, 3, 4, 5 

Pentagon E3 E2 E5, E1 E2 E5 30, 45, 60, 90 1, 2, 3, 4 

E1 
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E4 
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          (a)                             (b)              (c)            (d)                        (e) 
Fig 3. Input and output representation for stress distribution prediction: (a) geometry, (b) boundary 

condition, (c) horizontal load, (d) vertical load, (e) output 

 

4.1.2 Output Data  

 

FEA was performed using the Partial Differential Equation (PDE) solver in the MATLAB toolbox 

to obtain the stress distributions of each sample. The MATLAB PDE toolbox mesh generator only 

generates unstructured triangulated meshes incompatible with CNN. Since each element should 

be represented by one pixel in an image, we develop a 600 × 600 grid surface equal to the 

dimensions of the most significant possible geometry. The stress values are then interpolated 

between the triangular elements and grids to determine a stress distribution compatible with our 

CNN network. 

 The stress values of all the elements outside the material geometry are assigned a zero, as shown 

in Fig. 3(e). The dimensions of the largest sample are 600 × 600 mm, and the smallest are 300 × 300 

mm. Therefore, the size of each element is 1×1 mm, which means that each image has 360000 

pixels. This high-resolution dataset led to achieving significant accuracy. The maximum and 

minimum von Mises stress values for elements among the entire dataset are 96,366 MPa and -0.73 
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MPa, respectively. We normalized all the output data between 0 and 1 to ensure faster 

convergence and encoded it to 600 × 600 matrices.  

5. CNN Architecture 

The CNN can be built using a sequence of convolutional layers. The convolutional layers learn to 

encode the input in simple signals and reconstruct the input [63]. Our CNN architecture consists 

of three types of layers: The first stage is downsampling layers which consist of seven 

convolutional layers (E1, E2, E3, E4, E5, E6, E7), and the second stage is three layers (RS1, RS2, 

and Rs3) of Squeeze-Excitation and Residual blocks (SE-ResNet). In addition, we have swapped 

the SE-ResNet block with the Inception and MobileNetV2 blocks to check if these modules will 

further enhance the network's performance. The last is upsampling layers, consisting of six 

deconvolutional layers (D1, D2, D3, D4, D5, D6), as illustrated in Fig. 4.  

 

 
 

Fig 4. Proposed CNN architecture 
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5.1 Residual block 

We used residual blocks [64] to address the vanishing gradient problem. In addition, SE blocks 

are computationally lightweight and result in only very small increases in model complexity [65]. 

As illustrated in Fig. 5, the formulation of F(x)+x can be realized by feedforward neural networks 

with shortcut connections. The shortcut connection simply performs identity mapping, and its 

output is added to the output of the stacked layers [65].  

 

 
 

Fig 5. The building block of residual learning [64] 

 

 
5.2 Squeeze and Excitation block     

As depicted in Fig. 6, Squeeze-and-Excitation blocks improve the representative capacity of the 

network, enabling dynamic channel-wise feature recalibration. A SE-block can be implemented 

with five steps. First, we feed the input x as a convolutional block. The current number of channels 

to the SE function, 𝐹𝑡𝑟 in Fig. 6 is the convolutional operator for the transformation of X to U. 

Then, in the second phase, each channel is squeezed into a single numeric value using the average 

pooling. Additionally, the third phase of a fully connected layer is followed by a ReLu function, 

which applies necessary nonlinearity to reduce the output channel complexity. Then in the fourth 

phase, SE blocks can be used directly with residual networks. Fig. 7 depicts a SE-ResNet module 

which the SE block transformation. 𝐹𝑡𝑟  is regarded as the non-identity branch of a residual 
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module. Before summation of the identity branch, both squeeze and excitation act. Using both SE 

and ResNet in the network outperforms using ResNet [65]. 

 
 

Fig 6. The building block of Squeeze-and-Excitation [65] 

 

  

 

 

 

 

 

 

 

 
Fig 7. SE-ResNet module 

 

 

5.3 Inception block 

The Inception Modules are used to reduce the computational cost of convolutional neural 

networks (CNNs). Since neural networks have to deal with a vast array of images, each with 

varying content, they must be carefully designed. Using the vanilla version of the inception 

module, we can perform a convolution on the input meaning three different sizes of filters (1x1, 

3x3, 5x5) instead of one. Also, max pooling is performed. The outputs are then concatenated and 

sent to the next layer. Therefore, convolutions occur at the same level in CNNs, where the 

network gets wider, not deeper. Compared with shallower and less wide networks, this method 

Residual 

Global pooling FC ReLU FC Sigmoid 

Scale + 
X 

𝑿෩ 

1 × 1 × C 1 × 1 × 
𝐶

𝑟
 1 × 1 × C 1 × 1 × C 1 × 1 × 

𝐶

𝑟
 

H × W × C H × W × C H × W × C 

https://towardsdatascience.com/review-resnet-winner-of-ilsvrc-2015-image-classification-localization-detection-e39402bfa5d8
https://deepai.org/machine-learning-glossary-and-terms/max-pooling
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offers significant quality gains at a modest computational cost increase [66]. Fig.8 depicts the 

inception module. 

 

Fig 8. Inception module 

 

 

5.4 MobileNetV2 block 

MobileNetV2 is based on an inverted residual block with shortcut connections between thin 

bottleneck layers [67]. A lightweight depth-wise convolution technique is used in the 

intermediate layer to filter features as a source of nonlinearity. The nonlinearities must be 

removed in the narrow layers to maintain representational power. In general, in this model, the 

bottlenecks encode the intermediate inputs and outputs of the model, while the inner layer 

encodes how the model can transform from lower-level concepts such as pixels to higher-level 

features such as categories of images. Lastly, shortcuts can improve training speed and accuracy, 

just like traditional residual connections. Fig.9 depicts the MobileNetV2. 

 

 

Fig 9. MobileNetV2 module 
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5.5 Network layers and hyperparameters 

All the details of the network layers and hyperparameters can be found in Table 2. As can be seen, 

the models consist of seven Conv layers, three different bottleneck blocks, and six ConvT layers. 

We tried various combinations of Conv and ConvT layers with maximum channels of 512, 1024, 

2048, and 4096. The model with 1024 channels shows the best performance. Therefore, we kept 

the network with 1024 channels as the primary model and swapped the bottleneck each time with 

the SE-ResNet, Inception, and MobileNetV2. We kept the bottleneck dimension the same for all 

models to match the ConvT first layer. The batch size is set to 16, leading to the best accuracy 

compared to other batch sizes. We tried different learning rates from 1e-3 to 1e-6, and 1e-5 led to 

the best convergence. 

 

Table 2. Network layers and hyperparameter 

Network Layers 

  Number of layers The first layer (HxWxC) Last layer (HxWxC) Activation 

Conv  7 600×600×12 10×10×1024 ReLU 

SE-ResNet 3 10×10×1024 10×10×1024 Sigmoid-ReLU 

Inception 3 10×10×1024 10×10×1024 ReLU 

EfficentNet 2 10×10×1024 10×10×1024 ReLU6 

ConvT 6 19×19×512 600×600×12 ReLU 

Network Hyperparameters 

batch size learning rate weight decay    epochs of training expand ratio Loss functions 

16 1.00E-05        1.00E-07                  120 6 MSE-MAE 

 

6. Loss function and performance metrics 

We used MSE (mean squared error) for the training loss defined in Equation 1. MSE gives a more 

significant penalty to large errors than MRE (mean relative error). Also, the errors will be 

normally distributed. Using MAE (mean absolute error), MRE, PMAE (percentage mean absolute 
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error), PAE (peak absolute error), and PPAE (percentage peak absolute error) helps evaluate the 

overall quality of predicted stress distribution. These metrics are defined in Equations 2,3,4,5, 

respectively. 

                                                     MSE = 
1

n
∑ (s(i)   −  s ̂(i))2n

i=1                                                 (1)                                                  

 

                                                     MAE = 
1

n
∑ |n

i=1 s(i)   −  s ̂(i)|                                                (2)                                                                

 

where s(i) is the stress value at a node i computed by FEA as the ground truth and, 𝑠̂(𝑖)  is the 

corresponding predicted stress by the DL model. Also, n is the total number of elements in each 

sample which is 360000 in our work. Symbol |   |denotes the absolute value. Our model's 

prediction and ground truth are displayed as 600 × 600 resolution images. 

Measure the accuracy of predictions by comparing them to the ground truth; we used MRE: 

 

 MRE = 
1

𝑛
∑  

|s(i)  − s ̂(i)|

∈ +max ( s(i), ŝ(i)) 

𝑛
𝑖=1  × 100             (3) 

where the ε term is a small value to avoid a division by zero.  

The percentage mean absolute error is defined as: 

                                             PMAE = MAE

max{s(i)}−min {s(i)}
 × 100                                                       (4)            

where max 𝑠(𝑖) is the maximum value in a set of ground truth stress values, and min 𝑠(𝑖) is the 

minimum value. 

PAE and PPAE measure the accuracy of the most significant stress value in the predicted stress 

distribution. PAE and PPAE are defined as: 

                                                 PAE =  max{𝑠(𝑖)} −  max{ 𝑠̂(𝑖)}                                                      (5) 
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                                                      PPAE =  
PAE

max{𝑠(𝑖)}
 × 100                                                              (6) 

9. Results and discussion 

All codes are written in PyTorch Lightning and run on two NVIDIA TITAN RTX 24G GPUs. We 

used AdamW (Adam algorithm with weight decay) optimizer to speed up the convergence of 

our models. We trained and evaluated different models based on Table 3 to find the model with 

the best performance. The training data size of models 1 to 3 is 83,558, and the testing data size is 

20,890, randomly divided with a train/test ratio of 80% - 20%. Fig. 10 shows MSE and MAE losses 

as a function of epochs in model 1. Fig. 10(a) and 10(b) are linear and logarithmic scales. Fig. 10(a) 

shows that the MSE and MAE curves rapidly declined after a few epochs. However, Fig. 10(b) 

gives a more precise representation of the model's behavior. Fig. 10(b) shows that MSE is less 

than MAE, but both have almost similar trends. 

 

     (a)  (b) 
Fig 10. MSE and MAE curves on training and testing data with two scales: (a) linear scale, (b) logarithmic  

scale. 

 

We saved the best checkpoint during validation, and all error metrics are based on the best 

checkpoint. Models 4 to 6 are validated with K-fold cross-validation to ensure that our model is 

generalizable. To reduce the computational cost, we divided the dataset into three folds. K-fold 
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cross-validation shows the best performance in all models based on most metrics in Table 3, 

which means our model is generalizable. 

 

Table 3. Error metrics for models at best checkpoints (Units: mm-MPa-N) 

Model Dataset Bottleneck MSE MAE MRE(%) PMAE(%) PPAE(%) PAE 

Model 1 classic SE-ResNet 0.21 58.80 3.80 0.90 0.46 30.00 

Model 2 classic Inception 0.62 31.55 1.54 0.57 2.66 150.55 

Model 3 classic MobileNet 0.38 51.99 2.83 0.93 4.36 246.50 

Model 4 Fold 1 SE-ResNet 0.59 34.90 1.80 0.63 2.19 124.00 

Model 5 Fold 2 SE-ResNet 0.64 25.04 1.10 0.45 0.12 6.93 

Model 6 Fold 3 SE-ResNet 0.61 32.03 1.42 0.57 0.93 52.89 

Mean of K-fold cross-validation 0.61 30.65 1.44 0.55 1.08 61.27 

STD of K-fold cross-validation 0.02 4.14 0.28 0.07 0.85 48.15 

 

We replaced the SE-ResNet block in the bottleneck with the Inception and MobileNetV2 block in 

models 2 and 3, respectively. Model 1, has the best performance in terms of PPAE, with an error 

of 0.46% and model 2 is the best model, based on PMAE with a 0.57% error. Fig.11 depicts the 

performance of different models in terms of MAE. As it can be seen in Fig. 11 models 3 and 1, 

which have MobileNetworkV2 and SE-ResNets in a bottleneck, have almost the same 

performance, and model 2 with inception block is the best in terms of MAEs.  We deem these 

results satisfactory for stress distribution predictions, specifically the PPAE, the most critical load 

value for stress distribution in engineering domain applications. 

Fig. 12 illustrates the cumulative distribution of PMAE and PPAE in the test dataset of model 1. 

Fig. 12(a) shows the probability of mean in PMAE is 80%, which means that about 80% of 

predicted samples have a PMAE of less than 0.9, and 50% of samples have a PMAE of less than 
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0.46, which is the median. Fig. 12(b) shows that about 99% of predicted samples have a PPAE of 

less than 0.46, and 50% of the predicted samples have a PPAE of 0.06. 

 

 

Fig 11. Comparison of different models in terms of MAE 

 

 
(a)                                            (b) 

Fig 12. Cumulative distribution of PMAE and PPAE: (a) PMAE of samples less than mean and median on 

the test dataset, (b) PPAE of samples less than mean and median on the test dataset 

 

 

The prediction results of some randomly selected samples from the test dataset of model 1 are 

visualized in Fig. 13. Each row represents a sample. Columns (a) to (d) represent geometry, 

boundary conditions, and load in horizontal and vertical directions, respectively. Columns (e) 

and (f) represent the ground truth and predicted stress distributions. As it can be seen, there is a 

high fidelity fit between ground truth and predicted stress distributions in both maximum stress 
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and stress distribution in the different samples. Also, some inaccurate predictions are shown in 

Fig. 14. These predictions still provide useful information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                      (b)                   (c)                   (d)                   (e)                         (f) 

Fig 13. Predicted stress distribution and corresponding inputs with different loads and boundary 

conditions scenarios. Columns (a) to (d) represent geometry, boundary conditions, and load in a 

horizontal and vertical direction. Columns (e) and (f) represent ground truth and predicted stress 

distribution, respectively. (Units = mm-MPa-N) 
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(a)                      (b)                   (c)                   (d)                   (e)                         (f) 

 
Fig 14. Inaccurate predicted stress distribution and corresponding inputs with different loads and 

boundary conditions scenarios. Columns (a) to (d) represent geometry, boundary conditions, and load in a 

horizontal and vertical direction. Columns (e) and (f) represent ground truth and predicted stress 

distribution, respectively. (Units = mm-MPa-N) 

 

 

9.1 Effect of dataset size on the performance of the network 

We break the data into different sizes to evaluate the effect of data size on the network's 

performance of model 1. Therefore, besides training with the entire dataset, 104,448 samples, we 

train the network with 10k, 20k, 30k, 40k, 50k, and 70k samples. Fig. 15 demonstrates that training 

with just 10% of the dataset can achieve a mean error of 1.85%, which is acceptable in most 
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engineering applications. Also, it can be seen that if we want to accomplish a mean error of less 

than 1%, we should train the network with at least 90% of the dataset. 

 

 
Fig 15. PMAE at different data sizes. 

 

We also evaluate the effect of data size on the gaussian distributions of PMAE, and PPAE 

illustrated in Figs 16(a) and 16(b). As shown in Fig 16(a), increasing the data size decreases the 

standard deviation of PMAE. However, 70k and the total data size have almost the same standard 

deviation. Fig. 16(b) shows that the standard deviation of PPAE decreased when the data size 

increased from 50K to 70K. As a result, we should train the network with at least 70k examples, 

67% of our dataset, to improve PPAE's standard deviation accuracy. 

 
(a) (b) 

Fig 16. Gaussian distribution of PMAE and PPAE. (a) PMAE, (b) PPAE 
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10. Conclusion 

In this paper, we used end-to-end deep learning techniques. We developed a convolutional 

neural network (CNN) to alleviate the need for finite element methods to predict high-resolution 

stress distributions in loaded steel plates. The CNN was designed and trained to use the 

geometry, boundary conditions, and load as input and returns high-resolution stress contours as 

the output. We used the PDE toolbox of MATLAB to generate the output data for training, 

containing 104,448 FEM samples. We trained and evaluated different models to find the model 

with the best performance. The best model can predict the stress distributions with a mean 

absolute error of 0.9% and a maximum stress error of 0.46% in the Von Mises stress distribution. 

The effects of dataset size on the model performance are also studied. Training the network with 

just 10% of the dataset achieved a mean error of 1.85%, which can be considered acceptable in 

specific engineering applications. Moreover, we evaluated the effect of dataset size on the 

gaussian distribution of mean and maximum stress errors. Increasing the data size decreases the 

standard deviation of mean error. The standard deviation of maximum stress error decreased 

with the increasing number of samples. Furthermore, the Gaussian distributions of mean and 

maximum stress errors demonstrate that more data induce less standard deviation in PMAE and 

PPAE. 
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