
MUXConv: Information Multiplexing in Convolutional Neural Networks

Zhichao Lu Kalyanmoy Deb Vishnu Naresh Boddeti

Michigan State University

{luzhicha, kdeb, vishnu}@msu.edu

Abstract

Convolutional neural networks have witnessed remark-

able improvements in computational efficiency in recent

years. A key driving force has been the idea of trading-

off model expressivity and efficiency through a combina-

tion of 1×1 and depth-wise separable convolutions in lieu

of a standard convolutional layer. The price of the ef-

ficiency, however, is the sub-optimal flow of information

across space and channels in the network. To overcome this

limitation, we present MUXConv, a layer that is designed

to increase the flow of information by progressively mul-

tiplexing channel and spatial information in the network,

while mitigating computational complexity. Furthermore,

to demonstrate the effectiveness of MUXConv, we integrate

it within an efficient multi-objective evolutionary algorithm

to search for the optimal model hyper-parameters while si-

multaneously optimizing accuracy, compactness, and com-

putational efficiency. On ImageNet, the resulting mod-

els, dubbed MUXNets, match the performance (75.3% top-

1 accuracy) and multiply-add operations (218M) of Mo-

bileNetV3 while being 1.6× more compact, and outperform

other mobile models in all the three criteria. MUXNet also

performs well under transfer learning and when adapted

to object detection. On the ChestX-Ray 14 benchmark, its

accuracy is comparable to the state-of-the-art while being

3.3× more compact and 14× more efficient. Similarly, de-

tection on PASCAL VOC 2007 is 1.2% more accurate, 28%

faster and 6% more compact compared to MobileNetV2.

The code is available from https://github.com/

human-analysis/MUXConv .

1. Introduction

In the span of the last decade, convolutional neural net-

works (CNNs) have undergone a dramatic transformation

in terms of predictive performance, compactness and com-

putational efficiency. The development largely happened

in two phases. Starting from AlexNet [20], the focus of

the first wave of models was on improving the predictive

accuracy of CNNs including VGG [35], GoogleNet [37],

0

100

200

300

400

500

600

3

3.5

4

4.5

5

5.5

66

68

70

72

74

76

91

92

93

94

95

96

97

98

NASNet­A Mobile EfficientNet­B0 MixNet­S MUXNet (ours)

M
A
dd
s 
(M

)

Pa
ra
m
s 
(M

)

Im
ag
eN

et
 T
op
­1
 (
%
)

C
IF
A
R
­1
0 
To
p­
1 
(%

)

NASNet­A mobile

MixNet­S

MixNet­M

EfficientNet­B0

EfficientNet­B1

MUXNet­s

m

MUXNet­l

MobileNetV2

MobileNetV3 large

MobileNetV3 small

60M
220M 300M

560M

MAdds
Reference

2 3 4 5 6 7 8 9

60

65

70

75

80

Number of Parameters (Millions)

Im
ag
eN

et
 T
op
­1
 A
cc
. 
(%

)

Accuracy vs Params vs MAdds

Figure 1: Accuracy vs. Compactness vs. Efficiency: Existing networks

outperform each other in at most two criteria. MUXNet models are, how-

ever, dominant in all three objectives under mobile settings.

ResNet [11], ResNeXt [43], DenseNet [16] etc. These mod-

els progressively increased the contribution of 3×3 convolu-

tions, both in model size as well as multiply-add operations

(MAdds). The focus of the second wave of models was on

improving their computational efficiency while trading-off

accuracy to a small extent. Models in this category include

ShuffleNet [26], MobileNetV2 [32], MnasNet [38] and Mo-

bileNetV3 [12]. Such solutions sought to improve compu-

tational efficiency by progressively replacing the parameter

and compute intensive standard convolutions by a combina-

tion of 1×1 convolutions and depth-wise separable 3×3 con-

volutions. Figure 2 depicts the trend in the relative contribu-

tions of different layers in terms of parameters and MAdds.

Depth-wise separable convolutions [34, 4] offer signif-

icant computational benefits, both from the perspective of

number of parameters as well as computational complex-

ity. A salient feature of these layers is the lack of interac-

1

https://github.com/human-analysis/MUXConv
https://github.com/human-analysis/MUXConv

0

0.5

1

AlexNet
VGG11

VGG19
GoogLeNet

ResNet18

ResNet34

ResNet50

Inception­V3

DenseNet121

DenseNet169

ResNeXt50 32x4d

ResNeXt101 32x8d

MobileNet­V2

ShuffleNet­V2

MnasNet

MUXNet­s

MUXNet­m

MUXNet­l

0

0.5

1

3x3, 5x5, 7x7, ... conv. 1x1 conv. linear others

Pa
ra
m
et
er
s

M
A
dd
s

Figure 2: Relative contribution of different layers in CNN designs in terms

of parameters (top) and MAdds (bottom). Initial models largely relied on

standard convolutional layers. More recent networks, on the other hand,

largely rely on 1×1 convolutions and linear layers. In contrast, MUXNets

reverse this trend to an extent.

tions between information in the channels. This limitation

is overcome through 1×1 convolution, a layer which allows

for interactions and information flow across the channels.

The combination of depth-wise separable and 1×1 convo-

lution fully decouples the task of spatial and channel in-

formation flow, respectively, into two independent and ef-

ficient layers. On the other hand, a standard convolutional

layer couples the spatial and channel information flow into a

single, yet, computationally inefficient layer. Therefore, the

former replaced the latter as the workhorse of CNN designs.

In this paper, we seek an alternative approach to trade-off

the expressivity and efficiency of convolutional layers. We

introduce MUXConv, a layer that leverages the efficiency of

depth-wise or group-wise convolutional layers along with a

mechanism to enhance the flow of information in the net-

work. MUXConv achieves this through two components,

spatial multiplexing and channel multiplexing. Spatial mul-

tiplexing extracts feature information at multiple scales via

spatial shuffling, processes such information through depth-

wise or group-wise convolutions and then unshuffles them

back together. Channel multiplexing is inspired by Shuf-

fleNet [26] and is designed to address the limitation of

depth-wise/group convolutions, namely the lack of informa-

tion flow across channels/groups of channels, by shuffling

the channels. The shuffling procedure and the operations we

perform on the shuffled channels are motivated by compu-

tational efficiency and differ significantly from ShuffleNet.

Collectively, these two components increase the flow of in-

formation, both spatially and across channels, while miti-

gating the computational burden of the layer.

To further realize the full potential of MUXConv in

trading-off accuracy and computational efficiency, we pro-

pose a population based evolutionary algorithm to effi-

ciently search for the hyperparameters of each MUXConv

layer in the network. The search simultaneously optimizes

three objectives, namely, prediction accuracy, model com-

pactness and model efficiency in terms of MAdds. To im-

prove the efficiency of the search process we decompose

the multi-objective optimization problem into a collection

of single-objective optimization sub-problems, that are in

turn optimized simultaneously and cooperatively. We refer

to the resulting family of CNNs as MUXNets.

Contributions: We first develop a new layer, called MUX-

Conv, that multiplexes information flow spatially and across

channels while improving the computational efficiency of

equivalent combination of depth-wise separable and 1×1
convolutions. Then, we develop the first multi-objective

neural architecture search (NAS) algorithm to simultane-

ously optimize compactness, efficiency, and accuracy of

MUXNets designed with MUXConv as the basic build-

ing block. We present thorough experimental evaluation

demonstrating the efficacy and value of each component

of MUXNet across multiple tasks including image classifi-

cation (ImageNet), object detection (PASCAL VOC 2007)

and transfer learning (CIFAR-10, CIFAR-100, ChestX-

Ray14). Our results indicate that, unlike the conventional

wisdom in all existing solutions, it is feasible to design

CNNs that do not sacrifice compactness for efficiency or

vice versa in the quest for better predictive performance.

2. Related-work

Many CNN architectures have been developed by opti-

mizing different objectives, such as, model compactness,

computational efficiency, or predictive performance. Be-

low, we categorize the solutions into a few major themes.

Multi-Scale and Shuffling: The notion of multi-scale pro-

cessing in CNNs has been utilized in different forms and

in a variety of contexts. These include explicit processing

of multi-resolution feature maps for object detection [2, 21]

and image classification [14] and computational blocks with

built-in multi-scale processing [3, 9]. The focus of these

methods is predictive performance and hence towards large

scale models. In contrast, multi-scale processing in MUX-

Conv is motivated by enhancing information flow in small

scale models deployed in resource constrained environ-

ments. Notably, MUXConv scales the feature maps through

a pixel shuffling operation that is similar to subpixel convo-

lution in [33]. The channel shuffling component of MUX-

Conv is motivated by [47, 26].

Mobile Architectures: A number of CNN architectures

have been developed for mobile settings. These include

SqueezeNet [18], MobileNet [13], MobileNetV2 [32], Mo-

bileNetV3 [12], ShuffleNet [47], ShuffleNetV2 [26] and

CondenseNet [15]. The focus of this body of work has

largely been to optimize two objectives, either accuracy and

compactness or accuracy and efficiency, thereby resulting

in models that are either efficient or compact but not both.

In contrast, MUXNets are designed to simultaneously op-

timize all three objectives, compactness, efficiency and ac-

curacy, and therefore leads to models that are both compact

and efficient at the same time.

Neural Architecture Search: Automated approaches to

search for good neural architectures have proven to be very

effective in finding computational blocks that not only ex-

hibit high predictive performance but also generalize and

transfer to other tasks. Majority of the approaches in-

cluding, NasNet [48], PNAS [22], DARTS [23], Amoe-

baNet [30] and MixNet [40], are optimized against a sin-

gle objective, namely predictive performance. A couple of

recent approaches, LEMONADE [7], NSGANet [25], si-

multaneously optimize the networks against multiple objec-

tives, including parameters, MAdds, latency, and accuracy.

However, only results on small-scale datasets like CIFAR-

10 are demonstrated in both approaches. Concurrently, a

number of CNN architectures, such as ProxylessNAS [1],

MnasNet [38], ChamNet [5] and FBNet [5], have been de-

signed to target specific computing platforms such as mo-

bile, CPU, and GPU. In contrast to the aforementioned NAS

approaches, we adopt a hybrid search strategy where the

basic computational block, MUXConv, is hand-designed

while the hyper-parameters of each MUXConv layer in the

network are searched through a population based evolution-

ary algorithm directly on a large scale dataset.

3. Multiplexed Convolutions

The multiplexed convolution layer, called MUXConv, is

a combination of two components: (1) spatial multiplex-

ing which enhances the expressivity and predictive perfor-

mance of the network, and (2) channel multiplexing which

aids in reducing the computational complexity of the model.

3.1. Spatial Multiplexing

The expressivity of a standard convolutional layer stems

from the flow of information spatially and across the chan-

nels. Spatial multiplexing is designed to mimic this prop-

erty while mitigating its computational complexity. The key

idea is to map spatial information at multiple scales into

channels and vice versa. Specifically, given a feature map

x ∈ R
C×H×W , where C is the number of channels, H is

the height and W is the width of the feature map, the chan-

nels are grouped into three groups of (C1, C2, C3) channels

such that C = C1 + C2 + C3. The first and third group of

channels are subjected to a subpixel and superpixel multi-

plexing operation, respectively. The multiplexed channels

are then processed through a group-wise convolution oper-

ation defined over each of the three groups. The output fea-

ture maps from the group convolutions are mapped back to

the same dimensions as the input feature maps by reversing

!

" #

#

#

Group-wise Conv!

2

"

2

4#

!

"

#

2"

2!

#

4

!

" #

#

#

(a)

!

"

Spatial to

channel

#

!

#

"

"
$

(b)

!
"

!	$

%

$

!	%

Channel

to spatial

%

!

(c)

Figure 3: (a) Overview of spatial multiplexing operation. (b) Subpixel

operation multiplexes spatial information into channels. (c) Superpixel

operation multiplexes channels into spatial information.

the respective subpixel and superpixel operations. An illus-

tration of this process is shown in Fig. 3a. Collectively, the

subpixel and superpixel operations allow multi-scale spatial

information to flow across channels. We note that the stan-

dard idea of multi-scale processing in existing approaches,

multi-scale feature representations or kernels with larger re-

ceptive fields, is typically across different layers. In con-

trast, MUXConv seeks to exploit multi-scale information

within a layer through pixel manipulation. As we show in

Section 6, this operation significantly improves network ac-

curacy especially as they get more compact.

We parameterize the subpixel multiplexing operation

(see Fig. 3b) by r and define a window and stride of

size r×r. The features in the windows are mapped to r2

channels, with each window corresponding to a unique fea-

ture location in the channels. On the whole, the subpixel

operation maps the first group of channel features of size

C1 × H × W to features of size r2C1 ×
H
r
× W

r
. There-

fore, the subpixel operation enables down-scaled spatial in-

formation to be multiplexed with channel information and

processed jointly by a standard convolution over the group.

The combination of the two operations effectively increases

the receptive field of the convolution by a factor of r.

We define the superpixel multiplexing operation (see

Fig. 3c) as an inverse of subpixel multiplexing. It is param-

eterized by r2 which corresponds to the number of channels

that will be multiplexed spatially into a single channel. The

feature values at a particular location from the r2 channels

are mapped to a unique window in the output feature map.

On the whole, the superpixel operation maps the third group

of channels features of size C3 ×H ×W to features of size
C3

r2
× rH × rW . Therefore, the superpixel operation en-

ables channel information to be multiplexed with up-scaled

spatial information and processed jointly by a standard con-

volution over the group. The combination of the two oper-

↓

1

2

3

4

5

6

7

8
↓

1
	×
	1

↓

S
p
at
ia
lM
U
X

↓

1
×
1

↓

1

2

3

4

5

6

7

8

m
ix
-u
p

↓
1

5

2

6

3

7

4

8

↓

1
	×
	1

↓

S
p
at
ia
lM
U
X

↓

1
	×
	1

↓

1

5

2

6

3

7

4

8

m
ix
-u
p

↓

1

3

5

7

2

4

6

8

↓

R
ed
u
ct
io
n
B
lo
ck

↓

copyle
av

e
o

u
t

copy

le
av

e
o

u
t

Figure 4: Illustration of two channel multiplexing layers. In each layer,

half the channels are propagated as is while the other half are processed

through the spatial multiplexing operation. The channels from the two

groups are then interleaved as denoted by the indices. Color intensity de-

notes number of times that channel is processed.

ations effectively decreases the receptive field of the convo-

lution by a factor of r. Our superpixel operation bears sim-

ilarity to the concept of tiled convolution [27], a particular

realization of locally connected layers. This idea has also

been particularly effective for image super-resolution [33]

in the form of “subpixel" convolution.

3.2. Channel Multiplexing

While the spatial multiplexing operation described above

is effective, it still suffers from some limitations. Firstly, the

group convolutions in spatial multiplexing are more com-

putationally expensive than depth-wise separable convolu-

tions that they replace. Secondly, the decoupled nature of

the group convolutions does not allow for flow of informa-

tion across the groups. The channel multiplexing operation

is designed to mitigate these drawbacks by reducing the

computational burden of spatial multiplexing and further

enhancing the flow of information across the feature map

channels. This is achieved in two stages, selective process-

ing and channel shuffling. A illustration of the whole oper-

ation is shown in Fig. 4. Overall, the channel multiplexing

operation is similar in spirit to ShuffleNet [47] and Shuf-

fleNetV2 [26] but with notable variations; (1) ShuffleNet

uses shuffling to share channel information that are pro-

cessed in different groups, while we use shuffling to blend

the raw and processed channel information., (2) While

ShuffleNetV2 always splits the input channels in half, we

treat it as a hyperparameter that is searched for each layer,

and (3) Shuffled channels are processed through an inverted

residual bottleneck block in ShuffleNetV2 as opposed to

spatial multiplexing in our case.

Selective Processing: We process only a part of the in-

put channels by the spatial multiplexing block. Specifically,

the C channels in the input feature maps are split into two

groups with C1 and C2 channels, such that C = C1 + C2.

The first group of channels are propagated as is while the

second group are processed through spatial multiplexing.

This scheme immediately increases the compactness and ef-

ficiency by a factor of
(

C
C2

)2

, which can compensate for the

computational burden of grouped as opposed to depth-wise

separable convolutions.

Channel Shuffling: After the selective processing opera-

tion, we shuffle the channels of the output feature map in a

fixed pattern. Alternative channels selected from the unpro-

cessed and processed channels are interleaved.

4. Tri-Objective Hyperparameter Search

Designing a CNN typically involves many hyperparam-

eters that critically impact the performance of the models.

In order to realize the full potential of MUXNet we seek to

search for the optimal hyperparameters in each layer of the

network. Since the primary design motive of MUXConv

is to increase model expressivity while mitigating compu-

tational complexity, we propose a multi-objective hyperpa-

rameter search algorithm to simultaneously optimize for ac-

curacy, compactness and efficiency. This can be stated as,

minimize F(x) =
(

f1(x), · · · , fm(x)
)T

,

subject to x ∈ Ω,
(1)

where in our context Ω = Πn
i=1[ai, bi] ⊆ R

n is the hy-

perparameter decision space, where ai, bi are the lower and

upper bounds, x = (x1, . . . , xn)
T ∈ Ω is a candidate hy-

perparameter setting, F : Ω → R
m constitutes m competing

objectives, i.e. predictive error, model size, model ineffi-

ciency, etc., and R
m is the objective space.

As the number of objectives increases, the number of

solutions needed to approximate the entire Pareto surface

grows exponentially [6], rendering a global search imprac-

tical in most cases. To overcome this challenge we pro-

pose a reference guided hyperparameter search. Instead

of spanning the entire search space, we focus the hyper-

parameter search to a neighborhood around few desired

user-defined preferences. An illustration of this concept is

shown in Fig. 5a. For instance, in our context, this could

correspond to different desired accuracy targets and hard-

ware specifications. This idea enables us to decompose

the tri-objective problem into multiple single objective sub-

problems. We adopt the penalty-based boundary intersec-

tion (PBI) method [46] to scalarize multiple objectives into

a single objective,

minimize g
pbi(x|w, z∗) = d1 + θd2

subject to x ∈ Ω,
(2)

where d2 =

∥

∥

∥

∥

F(x) −

(

z
∗ + d1

w

||w||

)
∥

∥

∥

∥

, d1 =

||(F(x)−z
∗)Tw||

||w|| , z∗ = (z∗1 , . . . , z
∗
m)T is the ideal objective

vector with z∗i < minx∈Ω fi(x) i ∈ {1, . . . ,m}. θ ≥ 0 is a

trade-off hyperparameter that is set to 5 and w is the refer-

ence direction obtained by connecting the ideal solution to

the desired reference target.

Reference

Point

Reference

Direction

Region of

Interest

Ideal

Point

Pareto

Surface

(a)

Attainable

Objective set

!"

!#	

Ideal

Point%	
∗

Reference

Point

Reference

Direction

' =)# ,)"
+

Region of

Interest

(b)

Figure 5: Tri-Objective Search: (a) We leverage user-defined preferences

to decompose the tri-objective problem into multiple single-objective sub-

problems. By focusing on sub-regions as opposed to the entire Pareto sur-

face, our approach is more efficient. (b) The reference direction is formed

by joining the ideal point and user supplied reference targets. The PBI

method is used to scalarize the objectives based on the projected distance

d2 to the reference target w, and the distance d1 to the ideal point.

Conceptually, the PBI method constructs a composite

measure of the convergence (d1) of the solution to the given

reference targets and diversity (d2) of the solutions itself.

See Fig.5b for an illustration. In our context, d1 (distance

between current projected solution and ideal solution) seeks

to push the solution to the boundary of attainable objective

space and d2 measures how close the solution is to the user’s

preference. Finally, we adopt a multi-objective evolution-

ary algorithm based on decomposition (MOEA/D [46]), to

simultaneously solve the decomposed sub-problems while

optimizing the scalarized objective.

5. Experiments

We evaluate the efficacy of MUXNets on three tasks; im-

age classification, object detection, and transfer learning.

5.1. Hyperparameter Search Details

Search Space: To compensate for the extra hyperparam-

eters introduced by spatial and channel multiplexing, we

constrain the commonly adopted layer-wise search space [1,

38, 12] to a stage-wise search space, where layers within

the same stage share the same hyperparameters. MUXNets

consist of four stages, where each stage begins with a re-

duction block and is followed by a series of normal blocks.

In each stage, we search for kernel size, expansion ra-

tio, repetitions of normal blocks, leave-out ratio for chan-

nel multiplexing and the spatial multiplexing settings (see

supplementary for details). To further reduce the search

space, we always adopt squeeze-and-excitation [18] and use

swish [29] non-linearity for activation at each stage except

the first stage, where a ReLU is used.

Search: Following previous work [1, 38], we conduct the

search directly on ImageNet and estimate model accuracy

on a subset consisting of 50K randomly sampled images

from the training set. As a common practice, during search,

the number of training epochs are reduced to 5. We select

four reference points with preferences on model size rang-

ing from 1.5M to 5M, MAdds ranging from 60M to 300M,

and predictive accuracy fixed at 1. The compactness and

efficiency objectives are normalized between [0, 1] before

aggregation. Search is initialized with a global population

size of 40 and evolved for 100 iterations, which takes about

11 days on sixteen 2080Ti GPUs. At the end of evolution,

we pick the top 5 (based on PBI aggregated function values)

models from each of the four subproblems, and retrain them

thoroughly from scratch on ImageNet. The four resulting

models are named as MUXNet-xs/s/m/l. Architectural de-

tails can be found in the supplementary material.

5.2. ImageNet Classification

For training on ImageNet, we follow the procedure

outlined in [38]. Specifically, we adopt Inception pre-

processing with image size 224×224 [36], batch size of 256,

RMSProp optimizer with decay 0.9, momentum 0.9, and

weight decay 1e-5. A Dropout layer of rate 0.2 is added be-

fore the last linear layer. Learning rate is linearly increased

to 0.016 in the initial 5 epochs [10], it then decays every 3

epochs at a rate of 0.03. We further complement the training

with exponential moving average with decay rate of 0.9998.

Table 1 shows the performance of baselines and

MUXNets on ImageNet 2012 benchmark [31]. We compare

them in terms of accuracy on validation set, model compact-

ness (parameter size), model efficiency (MAdds) and infer-

ence latency on CPU and GPU. Overall, MUXNets consis-

tently either match or outperform other models across dif-

ferent accuracy levels. In particular, MUXNet-m achieves

75.3% accuracy with 3.4M parameters and 218M MAdds,

which is 1.4× more efficient and 1.6× more compact when

compared to MnasNet-A1 [38] and MobileNetV3 [12], re-

spectively. Figures 1 and 6 visualize the trade-off ob-

tained by MUXNet and previous models. In terms of ac-

curacy and compactness, MUXNet clearly dominates all

previous models including MnasNet [38], FBNet [42], Mo-

bileNetV3 [12], and MixNet [40]. In terms of accuracy and

efficiency, MUXNets are on par with current state-of-the-art

models, i.e. MobileNetV3 and MixNet.

In terms of latency, the performance of MUXNet models

is mixed since they, (i) use non-standard primitives that do

not have readily available efficient low-level implementa-

tions, and (ii) are not explicitly optimized for latency. Com-

pared to methods that use optimized convolutional prim-

itives but do not directly optimize for latency (Efficient-

Net/MixNet), MUXNet’s latency is competitive despite us-

ing unoptimized spatial and channel multiplexing primi-

tives. MUXNet’s limitations due to unoptimized implemen-

tation can be offset, to an extent, by its inherent FLOPs

and parameter efficiency. MUXNet is not as competitive

as methods that directly use CPU or GPU latency on Pixel

phones as a search objective (MobileNetV3, MnasNet).

Table 1: ImageNet Classification [31]: MUXNet comparison with manual and automated design of efficient convolutional neural networks. Models are

grouped into sections for better visualization. Our results are underlined and the best result in each section is in bold. CPU latency (batchsize=1) is measured

on Intel i7-8700K and GPU latency (batchsize=64) is measured on 1080Ti. ‡ indicates the objective (in addition to predictive performance) that the method

explicitly optimizes through NAS.

Model Type #MAdds Ratio #Params Ratio CPU(ms) GPU(ms) Top-1 (%) Top-5 (%)

MUXNet-xs (ours) auto 66M‡ 1.0x 1.8M‡ 1.0x 6.8 18 66.7 86.8

MobileNetV2_0.5 [32] manual 97M 1.5x 2.0M 1.1x 6.2 17 65.4 86.4

MobileNetV3 small [12] combined 66M 1.0x 2.9M 1.6x 6.2‡ 14 67.4 -

MUXNet-s (ours) auto 117M‡ 1.0x 2.4M‡ 1.0x 9.5 25 71.6 90.3

MobileNetV1 [13] manual 575M 4.9x 4.2M 1.8x 7.3 20 70.6 89.5

ShuffleNetV2 [26] manual 146M 1.3x - - 6.8 11‡ 69.4 -

ChamNet-C [5] auto 212M 1.8x 3.4M 1.4x - - 71.6 -

MUXNet-m (ours) auto 218M‡ 1.0x 3.4M‡ 1.0x 14.7 42 75.3 92.5

MobileNetV2 [32] manual 300M 1.4x 3.4M 1.0x 8.3‡ 23 72.0 91.0

ShuffleNetV2 2× [26] manual 591M 2.7x 7.4M 2.2x 11.0 22‡ 74.9 -

MnasNet-A1 [38] auto 312M 1.4x 3.9M 1.1x 9.3‡ 32 75.2 92.5

MobileNetV3 large [12] combined 219M 1.0x 5.4M 1.6x 10.0‡ 33 75.2 -

MUXNet-l (ours) auto 318M‡ 1.0x 4.0M‡ 1.0x 19.2 74 76.6 93.2

MnasNet-A2 [38] auto 340M 1.1x 4.8M 1.2x - - 75.6 92.7

FBNet-C [42] auto 375M 1.2x 5.5M 1.4x 9.1‡ 31 74.9 -

EfficientNet-B0 [39] auto 390M‡ 1.2x 5.3M 1.3x 14.4 46 76.3 93.2

MixNet-M [40] auto 360M‡ 1.1x 5.0M 1.2x 24.3 79 77.0 93.3

2 3 4 5 6 7 8

60

62

64

66

68

70

72

74

76

78

80

3 4 5 6 7 8 9
100

2 3 4 5 6 7

60

62

64

66

68

70

72

74

76

78

80

MUXNet MobileNetV2 MobileNetV3 large MobileNetV3 small MnasNet MixNet
FBNet ChamNet ProxylessNAS GPU NASNet­A AmoebaNet­A DARTS

Number of Parameters (Millions) Number of MAdds (Millions)

To
p 
1 
ac
cu
ra
cy
 (
%
)

Figure 6: The trade-off between model complexity and top-1 accuracy on ImageNet. This allows us to compare models designed for different computation

requirements in number of parameters or number of multi-adds. All our models use input resolution of 224× 224. We use dash line to denote models from

channel width multipliers or with different input resolutions.

5.3. Object Detection

Table 2: PASCAL VOC2007 [8] Detection

Network #MAdds #Params mAP (%)

VGG16 + SSD [24] 35B 26.3M 74.3

MobileNet + SSD [17] 1.6B 9.5M 67.6

MobileNetV2 + SSDLite [32] 0.7B 3.4M 67.4

MobileNetV2 + SSD [32] 1.4B 8.9M 73.2

MUXNet-m + SSDLite (ours) 0.5B 3.2M 68.6

MUXNet-l + SSD (ours) 1.4B 9.9M 73.8

We evaluate and compare the generalization ability of

MUXNet and other peer models on the PASCAL VOC de-

tection benchmark [8]. Our experiments use both the Single

Shot Detector (SSD) [24] and the Single Shot Detector Lite

(SSDLite) [32] as the detection frameworks, with MUXNet

as the feature extraction backbone. We follow the procedure

in [32] to setup the additional prediction layers, i.e. location

of detection heads in the backbone, size of corresponding

boxes, etc. The combined trainval sets of PASCAL VOC

2007 and 2012 are used for training. Other details include,

SGD optimizer with momentum 0.9 and weight decay 5e-

4, batch size of 32, input image resized to 300×300 and

learning rate of 0.01 with cosine annealing to 0.0 in 200

epochs. Table 2 reports the mean Average Precision (mAP)

on the PASCAL VOC 2007 test set. When paired with the

1
2 3 4 5 6 7 8 9

10
2

96

96.5

97

97.5

98

100 2 5 1000 2 5

96

96.5

97

97.5

98

1
2 3 4 5 6 7 8 9

10
2

81

82

83

84

85

86

87

88

100 2 5 1000 2 5

81

82

83

84

85

86

87

88

MUXNet ResNet-50 DenseNet-169 Inception v3 MobileNetV1 MobileNetV2 NASNet-A mobile EfficientNet-B0 MixNet-M

Number of Parameters (Millions) Number of Mult-Adds (Millions) Number of Parameters (Millions) Number of Mult-Adds (Millions)

To
p

1
ac

cu
ra

cy
 (

%
)

CIFAR-10 CIFAR-10 CIFAR-100 CIFAR-100

Figure 7: Transfer Learning on CIFAR: Trade-off between Top-1 accuracy and #Params / #MAdds.

same detector framework SSDLite, our MUXNet-m model

achieves 1.2% higher mAP than MobileNetV2 [32] while

being 6% more compact and 1.4× more efficient.

5.4. Transfer Learning

To further explore the efficacy of MUXNet we evaluate

it under the transfer learning setup in [19] on three different

datasets; CIFAR-10, CIFAR-100 and ChestX-Ray14 [41].

5.4.1 CIFAR-10 and CIFAR-100

Both CIFAR-10 and -100 datasets have 50,000 and 10,000

images for training and testing, respectively. CIFAR-100

extends CIFAR-10 by adding 90 more classes resulting in

10× fewer training examples per class. For training on both

datasets, the models are initialized with weights pre-trained

on ImageNet. The model is then fine-tuned using SGD with

momemtum 0.9, weight decay 4e-5 and gradients clipped to

a magnitude of 5. Learning rate is set to 0.01 with cosine

annealing to 0.0 in 150 epochs. For data augmentation, im-

ages are up-sampled via bicubic interpolation to 224×224
and horizontally fliped at random. Table 3 and Figure 7 re-

ports the accuracy, compactness and efficiency of MUXNet

and other baselines. Overall, MUXNet significantly out-

performs previous methods on both CIFAR-10 and -100

datasets, indicating that our models also transfer well to

other similar tasks. In particular, MUXNet-m achieves 1%

higher accuracy than NASNet-A mobile with 3× fewer pa-

rameters while being 2× more efficient in MAdds.

5.4.2 ChestX-Ray14

The ChestX-Ray14 benchmark was recently introduced

in [41]. The dataset consists of 112,120 high resolution

frontal-view chest X-ray images from 30,805 patients. Each

image is labeled with one or multiple common thorax dis-

eases, or “Normal”, otherwise. Due to the multi-label na-

ture of the dataset, we use a multitask learning setup where

each disease is treated as an individual binary classification

problem. We define a 14-dimensional label vector of binary

values indicating the presence of one or more diseases, and

optimize a regression loss as opposed to cross-entropy in

Table 3: Transfer Learning: Top-1 accuracy on CIFAR-10 (C-10) and

CIFAR-100 (C-100). ResNet, DenseNet, MobileNetV2, and NASNet-A

results are from [19].

Model #MAdds #Params C-10 (%) C-100 (%)

ResNet-50 [11] 4.1B 23.5M 96.77 84.50

DenseNet-169 [16] 3.4B 12.5M 97.40 85.00

MobileNetV2 [32] 0.3B 2.2M 95.74 80.80

NASNet-A mobile [48] 0.6B 4.2M 96.83 83.90

EfficientNet-B0 [39] 0.4B 4.0M 98.10 88.10

MixNet-M [40] 0.4B 3.5M 97.92 -

MUXNet-m (ours) 0.2B 2.1M 98.00 86.11

Table 4: Transfer Learning on ChestX-Ray14 [41]

Method #MAdds #Params Test AUROC (%)

Wang et al. (2017) [41] - - 73.8

Yao et al. (2017) [44] - - 79.8

CheXNet (2017) [28] 2.8B 7.0M 84.4

MUXNet-m (ours) 0.2B 2.1M 84.1

single-label cases. The training procedure is similar to the

CIFAR experiments for transfering pre-trained models. Ta-

ble 4 compares the performance of MUXNet-m with previ-

ous approaches, including CheXNet [28] which represents

the state-of-the-art on this dataset. Evidently, MUXNet-m’s

performance in terms of area under the receiver operating

characteristic (AUROC) curve on the test set is comparable

(84.1% vs 84.4%) to CheXNet while being 3× more com-

pact and 14× more efficient.

6. Ablation Study

Spatial Multiplexing: We incorporate the spatial multi-

plexing operation within the 3×3 depth-wise separable con-

volution layers of MobileNetV2. As we do in our main

experiments, we do not apply spatial multiplexing to the

reduction blocks. We manually fix the multiplexing hyper-

parameters to C1 = C3 = C
4 , C2 = C

2 i.e., 1/4 channels are

processed by subpixeling, 1/4 of the channels are processed

by superpixeling, and the remaining channels are processed

without modification. Figure 8a shows the effect of spatial

multiplexing on MobileNetV2 [32] at different width multi-

pliers. Spatial multiplexing consistently improves accuracy

over the original depth-wise separable convolution at fixed

40.7

56.0

65.5

70.4
72.7

5.78

8 9
10

2 3 4 5 6 7 8 9
100

2 3

35

40

45

50

55

60

65

70

75

MobileNetV2
MobileNetV2 w/ spatial multiplexing

Number of MAdds (Millions)

Im
ag
eN

et
 T
op
­1
 a
cc
ur
ac
y 
(%

)

(a) Spatial Multiplexing

l=0.25

l=0.5

l=0.75 w=0.75

w=0.5

r=192

r=160

r=128

(w=1.0, r=224, l=0.0)

100 150 200 250 300

65

66

67

68

69

70

71

72

73

l=0.25
l=0.5

l=0.75 w=0.75

w=0.5

r=192

r=160

r=128

(w=1.0, r=224, l=0.0)

2 2.5 3 3.5

65

66

67

68

69

70

71

72

73

width multiplier input resolution channel multiplexing

Number of MAdds (Millions) Number of Parameters (Millions)

To
p 
1 
ac
cu
ra
cy
 (
%
)

(b) Channel Multiplexing

Figure 8: Multiplexed Convolution Ablation Study: (a) Results correspond to width multiplier of 0.1, 0.25, 0.5, 0.75, and 1.0. (b) w, r and l are width

multiplier, input resolution and leave-out ratio, respectively. When l = 0.25, 75% of the input information is processed at each normal block.

spatial resolution. In particular, spatial multiplexing boosts

accuracy by 5.8% in low MAdds regime. The results sug-

gest that per MAdd, spatial multiplexing (groups+full conv)

has better information flow than dep-sep+1 × 1 conv. This

is more apparent in small models which have less channels,

so 1× 1 conv cannot effectively mix channel information.

Channel Multiplexing: To make models more efficient,

methods such as scaling down the number of channels by

a factor (named width multiplier), or scaling down the in-

put resolution have been proposed. Here we investigate the

impact of channel multiplexing as an alternative to reduce

model complexity. To be consistent with the main exper-

iments we only apply channel multiplexing to the normal

blocks. In MobileNetV2 [32] we gradually increase the

number of input channels that are left unprocessed in each

normal block. We use l to denote the leave-out ratio, where

a high value corresponds to less channels being processed

and hence more efficiency. The resulting trade-off with ac-

curacy is shown in Figure 8b. Evidently, reducing the reso-

lutions of input images provides a better trade-off between

accuracy and MAdds than reducing the channels. However,

reducing the input resolution provides no benefit to model

size. On the other hand, channel multiplexing offers com-

petitive trade-off in both cases; MAdds and model size. In

particular, leaving out 25% of the input channels at every

normal block appears to affect the predictive accuracy min-

imally, while simultaneously saving 13% in parameters and

20% in multiply-adds.

Search Efficiency: To thoroughly and efficiently evalu-

ate the effectiveness of the PBI decomposition technique

and the search efficiency of our proposed NAS algorithm,

we adopt the NASBench101 [45] benchmark. It contains

more than 400K unique models pre-trained on CIFAR-10,

whose Pareto-optimal solutions and predictive performance

are readily available without expensive training. In this

case, we aim to minimize the number of parameters, the

training time and maximize the accuracy. We also adopt the

regularized evolution [30] approach as a baseline for com-

parison. Figure 9 shows the search effectiveness for three

0 20 40 60 80
Training Time (mins)

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

To
p-

1
Ac

cu
ra

cy

0 10 20 30 40 50
Number of Parameters (Million)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

To
p-

1
Ac

cu
ra

cy

Number of Parameters (Million)

0
10

20
30

40
50

Training Time (m
ins)

20

40

60

80

To
p-

1
Ac

cu
ra

cy

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Attainable models Reference Point-1 Reference Point-2 Reference Point-3

Ours Regularized EvolutionOurs Regularized Evolution

Figure 9: Performance comparison between our approach and regularized

evolution (RE) [30] on NASBench101 [45]. Both methods are subject to

the same search budget of 1,000 maximum models sampled. We distribute

the search budget across three executions of RE for each one of the three

reference points. Our approach simultaneously targets all three reference

points in one run using all available budget.

reference points under a fixed computational budget. The

PBI scalarization is effective in directing the search towards

pre-defined target regions as the obtained solutions from

both methods are centered around the three provided target

points. In addition, we observe that by collectively solving

the sub-problems, we achieve better results under the same

search budget as opposed to solving the sub-problem one at

a time, as in case of regularized evolution.

7. Conclusion

This paper introduced MUXConv, an efficient alterna-

tive to a standard convolutional layer that is designed to

progressively multiplex channel and spatial information in

the network. Furthermore, we coupled it with an efficient

multi-objective evolutionary algorithm based hyperparam-

eter search to trade-off predictive accuracy, model com-

pactness and computational efficiency. Experimental results

on image classification, object detection and transfer learn-

ing suggest that MUXNets are able to match the predictive

accuracy and efficiency of current state-of-the-art models

while be more compact.

Acknowledgements: We gratefully acknowledge Dr. Erik

Goodman and Dr. Wolfgang Banzhaf for partially support-

ing the computational requirements of this work.

References

[1] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct

neural architecture search on target task and hardware. In In-

ternational Conference on Learning Representations (ICLR),

2019. 3, 5

[2] Zhaowei Cai, Quanfu Fan, Rogerio S Feris, and Nuno Vas-

concelos. A unified multi-scale deep convolutional neural

network for fast object detection. In European Conference

on Computer Vision (ECCV), 2016. 2

[3] Chun-Fu Chen, Quanfu Fan, Neil Mallinar, Tom Sercu, and

Rogerio Feris. Big-little net: An efficient multi-scale fea-

ture representation for visual and speech recognition. In In-

ternational Conference on Learning Representations (ICLR),

2019. 2

[4] François Chollet. Xception: Deep learning with depthwise

separable convolutions. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2017. 1

[5] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei

Sun, Yanghan Wang, Marat Dukhan, Yunqing Hu, Yiming

Wu, Yangqing Jia, et al. Chamnet: Towards efficient net-

work design through platform-aware model adaptation. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2019. 3, 6

[6] K. Deb. Multi-objective optimization using evolutionary al-

gorithms. Chichester: Wiley, 2001. 4

[7] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Ef-

ficient multi-objective neural architecture search via lamar-

ckian evolution. In International Conference on Learning

Representations (ICLR), 2019. 3

[8] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.

Williams, J. Winn, and A. Zisserman. The pascal visual ob-

ject classes challenge: A retrospective. International Journal

of Computer Vision, 111(1):98–136, Jan 2015. 6

[9] Shang-Hua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu

Zhang, Ming-Hsuan Yang, and Philip Torr. Res2net: A new

multi-scale backbone architecture. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2020. 2

[10] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,

Yangqing Jia, and Kaiming He. Accurate, large mini-

batch sgd: Training imagenet in 1 hour. arXiv preprint

arXiv:1706.02677, 2017. 5

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2016. 1, 7

[12] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig

Adam. Searching for mobilenetv3. In International Confer-

ence on Computer Vision (ICCV), 2019. 1, 2, 5, 6

[13] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 2, 6

[14] G Huang, D Che, T Li, F Wu, L van der Maaten, and K

Weinberger. Multi-scale dense networks for resource effi-

cient image classification. In International Conference on

Learning Representations (ICLR), 2018. 2

[15] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kil-

ian Q Weinberger. Condensenet: An efficient densenet using

learned group convolutions. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2018. 2

[16] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017. 1, 7

[17] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu,

Anoop Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wo-

jna, Yang Song, Sergio Guadarrama, et al. Speed/accuracy

trade-offs for modern convolutional object detectors. In

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2017. 6

[18] Forrest N Iandola, Song Han, Matthew W Moskewicz,

Khalid Ashraf, William J Dally, and Kurt Keutzer.

Squeezenet: Alexnet-level accuracy with 50x fewer parame-

ters and< 0.5 mb model size. In International Conference on

Learning Representations (ICLR), 2016. 2, 5

[19] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do bet-

ter imagenet models transfer better? In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2019. 7

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in Neural Information Processing Sys-

tems (NeurIPS), 2012. 1

[21] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2017. 2

[22] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon

Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan

Huang, and Kevin Murphy. Progressive neural architec-

ture search. In European Conference on Computer Vision

(ECCV), 2018. 3

[23] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:

Differentiable architecture search. In International Confer-

ence on Learning Representations (ICLR), 2019. 3

[24] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In European Con-

ference on Computer Vision (ECCV), 2016. 6

[25] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar,

Kalyanmoy Deb, Erik Goodman, and Wolfgang Banzhaf.

Nsga-net: Neural architecture search using multi-objective

genetic algorithm. In Genetic and Evolutionary Computa-

tion Conference (GECCO), 2019. 3

[26] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet v2: Practical guidelines for efficient cnn architec-

ture design. In European Conference on Computer Vision

(ECCV), 2018. 1, 2, 4, 6

[27] Jiquan Ngiam, Zhenghao Chen, Daniel Chia, Pang W Koh,

Quoc V Le, and Andrew Y Ng. Tiled convolutional neural

networks. In Advances in Neural Information Processing

Systems (NeurIPS), 2010. 4

[28] Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang,

Hershel Mehta, Tony Duan, Daisy Ding, Aarti Bagul, Curtis

Langlotz, Katie Shpanskaya, et al. Chexnet: Radiologist-

level pneumonia detection on chest x-rays with deep learn-

ing. arXiv preprint arXiv:1711.05225, 2017. 7

[29] Prajit Ramachandran, Barret Zoph, and Quoc V Le.

Searching for activation functions. arXiv preprint

arXiv:1710.05941, 2017. 5

[30] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. In AAAI Conference on Artificial Intelligence, 2019.

3, 8

[31] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International Journal of

Computer Vision, 115(3):211–252, 2015. 5, 6

[32] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2018. 1,

2, 6, 7, 8

[33] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,

Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan

Wang. Real-time single image and video super-resolution

using an efficient sub-pixel convolutional neural network. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2016. 2, 4

[34] Laurent Sifre and Stéphane Mallat. Rigid-motion scattering

for image classification. Ph. D. dissertation, 2014. 1

[35] Karen Simonyan and Andrew Zisserman. Very Deep Convo-

lutional Networks for Large-scale Image Recognition. In In-

ternational Conference on Learning Representations (ICLR),

2015. 1

[36] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and

Alexander A. Alemi. Inception-v4, inception-resnet and the

impact of residual connections on learning. In AAAI Confer-

ence on Artificial Intelligence, 2017. 5

[37] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2015. 1

[38] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-

net: Platform-aware neural architecture search for mobile.

In IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2019. 1, 3, 5, 6

[39] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. In Inter-

national Conference on Machine Learning (ICML), 2019. 6,

7

[40] Mingxing Tan and Quoc V. Le. Mixconv: Mixed depthwise

convolutional kernels. In British Machine Vision Conference

(BMVC), 2019. 3, 5, 6, 7

[41] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mo-

hammadhadi Bagheri, and Ronald M Summers. Chestx-

ray8: Hospital-scale chest x-ray database and benchmarks

on weakly-supervised classification and localization of com-

mon thorax diseases. In IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), 2017. 7

[42] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-

vnet design via differentiable neural architecture search. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2019. 5, 6

[43] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2017. 1

[44] Li Yao, Eric Poblenz, Dmitry Dagunts, Ben Covington, De-

von Bernard, and Kevin Lyman. Learning to diagnose from

scratch by exploiting dependencies among labels. arXiv

preprint arXiv:1710.10501, 2017. 7

[45] Chris Ying, Aaron Klein, Esteban Real, Eric Christiansen,

Kevin Murphy, and Frank Hutter. Nas-bench-101: Towards

reproducible neural architecture search. In International

Conference on Machine Learning (ICML), 2019. 8

[46] Qingfu Zhang and Hui Li. Moea/d: A multiobjective evo-

lutionary algorithm based on decomposition. IEEE Transac-

tions on Evolutionary Computation, 11(6):712–731, 2007. 4,

5

[47] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2018. 2, 4

[48] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2018. 3, 7

