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In this supplementary material we include (1) MUXNet

hyperparameter search space in Section 1, (2) computa-

tional complexity of MUXNet and comparison to a com-

bination of 1 × 1 + 3 × 3 in Section 2, (3) effectiveness

of MUXNet as a backbone semantic segmentation in Sec-

tion 3.1, and (4) evaluation of generalization and robustness

properties of MUXNet in Section 3.2. Finally Fig. 7 shows

some qualitative object detection results on PASCAL VOC

2007, and Fig. 8 shows gradCam results on the ChestX-

Ray14 dataset.

1. Search Space
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Figure 1: Search Space Encoding: Each stage is encoded as an integer

string. Genetic operations are performed on such encoding. See Table 1

for full details on the options.

To encode the hyperparameter settings for a model, we

first divide the model architectures into four stages, based

on the spatial resolution of each layer’s output feature map.

In each stage spatial resolution does not change. The first

layer in each stage reduces the feature map size by half.

For each stage, we search for kernel size (K) and expansion

ratio (E). In addition, from second layer in each stage, we

search for # of repetitions (N), # of input channels to com-

pute convolution (G), leave-out ratio in channel multiplex-

ing (L) and the spatial multiplexing setting (S) (see Fig. 1).

Table 1 summarizes the hyperparameters and available op-

tions for each stage. The obtained hyperparameters for our

MUXNets are visualized in Figure 2. The total volume of

the search space is approximately 14
12.

2. Computational Complexity

In this section, we analytically compare the computa-

tional complexity of our MUXConv block (Figure 3b) with

Hyperparameter Notation Options Stages

Normal

Blocks

Kernel size K {3, 5} {1, 2, 3, 4}

Expansion rate E {4, 6} {1, 2, 3, 4}

Group factor G {1, 2, 4} {1, 2, 3, 4}

Repetitions N {0, 1, 2, 3} {1, 2, 3, 4}

Leave-out ratio L {0.0, 0.25, 0.5} {1, 2, 3, 4}

Spatial Mux S
{0, [-1, 0, 0], [0, 0, 1],

[1, 0, 1], [-1, 0, 0, 1]}
{2, 3}

Reduction

Blocks

Kernel size K {3, [3, 5, 7], [3, 5, 7, 9]} {1, 2, 3, 4}

Expansion rate E {4, 6} {1, 2, 3, 4}

Table 1: Hyperparameter search space summary. The searched hyperpa-

rameters depend on both the block type—i.e. normal or reduction block,

and the stages. In case of spatial mutiplexing, option “-1" means subpixel

multiplexing, “1” means superpixel multiplexing, and “0” means no spa-

tial multiplexing. For instance, “[-1, 0, 1]” means applying subpixel to

1/3 of the input channels, superpixel to another 1/3 of the input channels,

and the remaining 1/3 are processed at the original resolution. And we

only apply spatial mutiplexing in stages two and three. For the kernel size

options in case of reduction blocks, we allow multiple parallel kernels to

down-sample the resolution, for example, “[3, 5, 7]” means three parallel

convolutions with kernel size of 3, 5, and 7.

the widely-used MobileNet block [6]. For simplicity, we ig-

nore the computation induced by the normalization and acti-

vation layers and we assume that for both blocks the number

of input and output channels is the same i.e., C channels.
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Figure 3: The visualization of the Mobilenet block (a) and our MUXConv

block (b).

The Mobilenet block consist of a 1 × 1 convolution to
expand the input channels, followed by a 3 × 3 depth-wise
separable convolution and another 1×1 convolution to com-
press the channels (see Figure 3a). We use E to denote
expansion rate. Then the total number of parameters and
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(d) MUXNet-l

Figure 2: The architectures of MUXNet-xs/s/m/l in Table 1 (main paper). All architectures share the same hyperparameter settings (except # of output

channels) for the blocks colored in yellow and they are fixed manually. The Dash lines indicate down-sampling points and we divide the architectures into

four main stages. We use E, K, G, and L to denote expansion rate, kernel size, number of channels per group and leave-out ratio, respectively. Blocks colored

in green use the inverted bottleneck structure proposed in [6]. Blocks colored in pink use both spatial and channel multiplexing and blocks colored in blue

only use channel multiplexing.

floating point operations are:

Params = C · EC
︸ ︷︷ ︸

1 × 1 conv

+ EC · 3 · 3
︸ ︷︷ ︸

3 × 3 d.w. conv

+EC · C
︸ ︷︷ ︸

1 × 1 conv

FLOPs = H ·W ·

(

C · EC·
︸ ︷︷ ︸

1 × 1 conv

+ EC · 3 · 3
︸ ︷︷ ︸

3 × 3 d.w. conv

+EC · C
︸ ︷︷ ︸

1 × 1 conv

)

On the other hand, our MUXConv block first select a subset of

the input channels to be processed, and the remaining portion is

directly propagated to the output. We use L to denote the ratio of

the leave-out un-processed channels. Then we use a 1 × 1 con-

volution to expand, followed by a group-wise convolution [9] and

another 1 × 1 convolution to compress (see Figure 3b). And we

use G to denote the group factor, which indicates the # of input

channels used for computing each output channel. For instance,

setting G equal to 1 is equivalent as using a depth-wise separable

convolution. The resulting number of parameters and the floating

point operations associated with our MUXConv block is:

Ĉ = (1− L) · C

Params = Ĉ · EĈ
︸ ︷︷ ︸

1 × 1 conv

+G · EĈ · 3 · 3
︸ ︷︷ ︸

3 × 3 group conv

+EĈ · Ĉ
︸ ︷︷ ︸

1 × 1 conv

FLOPs = H ·W ·

(

Ĉ · EĈ·
︸ ︷︷ ︸

1 × 1 conv

+G · EĈ · 3 · 3
︸ ︷︷ ︸

3 × 3 group conv

+EĈ · Ĉ
︸ ︷︷ ︸

1 × 1 conv

)

Figure 4 provides an visual comparison showing the ratio of

the number of parameters between our MUXConv block and Mo-

bilenet block as the group factor (G) and leave-out ratio (L) vary.

The choice of G and L hyperparameters we consider in our search

space (see Table 1) corresponds to computational complexity that

is less than the Mobilenet block (ratio ≤ 1, i.e. red color in Fig.4).
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Figure 4: Ratio of #Params between our MUXConv block and Mobilenet

block [6]. The search space that we consider for these two hyperparameters

is highlighted by a black box.

Network #MAdds #Params mIoU (%) Acc (%)

ResNet18 [2] + C1 1.8B 11.7M 33.82 76.05

MobileNetV2 [6] + C1 0.3B 3.5M 34.84 75.75

MUXNet-m + C1 0.2B 3.4M 32.42 75.00

ResNet18 + PPM 1.8B 11.7M 38.00 78.64

MobileNetV2 + PPM 0.3B 3.5M 35.76 77.77

MUXNet-m + PPM 0.2B 3.4M 35.80 76.33

Table 2: ADE20K [12] Semantic Segmentation Results. Since networks

in each section use the same segmentation head, we report the #MAdds and

#Params on the backbone models only. mIoU is the mean IoU and Acc is

the pixel accuracy. C1 use one convolution module as segmentation head

and PPM use the Pyramid Pooling Module from [10].

3. Additional Experiments

3.1. Semantic Segmentation

We further evaluate the effectiveness of our models as back-

bones for the task of mobile semantic segmentation. We com-

pare MUXNet-m with both MobileNetV2 [6] and ResNet18 [2]

on ADE20K [12] benchmark. Additionally, we also compare two

different segmentation heads. The first one, referred as C1, only

uses one convolution module. And the other one, Pyramid Pool-

ing Module (PPM), was proposed in [10]. All models are trained

under the same setup: we use SGD optimizer with initial learn-

ing rate 0.02, momentum 0.9, weight decay 1e-4 for 20 epochs.

Table 2 reports the mean IoU (mIoU) and pixel accuracy on the

ADE20K validation set. MUXNet-m performs comparably with

MobileNetV2 when paired with PPM, while being 1.5× more ef-

ficient in MAdds. We also provide qualitative visualization of se-

mantic segmentation examples in Figure 5.

3.2. Generalization and Robustness

To further evaluate the generalization performance of our pro-

posed models, we compare on a recently proposed benchmark

dataset, ImageNetV2 [5], complementary to the original ImageNet

2012. We use the MatchedFrequency version of the ImageNet-

V2. Figure 6a reports the top-5 accuracy comparison between

our MUXNets and a wide-range of previous models. Even though

there is a significant accuracy drop of 8% to 10% on ImageNet-V2

across models, the relative rank-order of accuracy on the origi-

nal ImageNet validation set translates well to the new ImageNet-

V2. And our MUXNet performs competitively on ImageNet-V2

as compared to other mobile models, such as ShuffleNetV2 [4],

MobileNetV2 [6] and MnasNet-A1 [7].

The vulnerability to small changes in query images has always

been a concern for designing better models. Hendrycks and Di-

etterich [3] recently introduced a new dataset, ImageNet-C, by

applying commonly observable corruptions (e.g., noise, weather,

compression, etc.) to the clean images from the original ImageNet

dataset. The new dataset contains images perturbed by 19 differ-

ent types of corruption at five different levels of severity. And

we leverage this dataset to evaluate the robustness of our pro-

posed models. Figure 6b compares Top-5 accuracy between our

MUXNet-m and four other representative models, designed both

manual and automatically. MUXNet-m performs favourably on

ImageNet-C, achieving better accuracy on 18 out of 19 corruption

types.
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Figure 5: Examples from ADE20K validation set showing the ground truth (2nd row) and the scene parsing result (3rd row) from MUXNet-m. Color

encoding of semantic categories is available from here.
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Figure 6: (a) Generalization performance on ImageNet-V2 (MatchedFrequency) [5]. Numbers in the boxes indicate the drop in accuracy. (b) Robustness

performance on ImageNet-C [3], which consist of ImageNet validation images corrupted by 19 commonly observable corruptions. Following the original

paper that proposed ImageNet-C, we normalized the top-5 accuracy by AlexNet’s Top-5 accuracy. DARTS is from the author’s public Github repository.

All other compared models are from Pytorch repository https://pytorch.org/docs/stable/torchvision/models.html.

neural networks. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2017. 2

[10] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang

Wang, and Jiaya Jia. Pyramid scene parsing network. In

https://github.com/CSAILVision/semantic-segmentation-pytorch
https://github.com/quark0/darts
https://pytorch.org/docs/stable/torchvision/models.html


Figure 7: Examples visualizing the detection performance of MUXNet-m on PASCAL VOC 2007 [1].

Atelectasis Cardiomegaly Effusion Infiltrate Pneumonia Pneumothorax

Figure 8: Examples of class activation map [11] of MUXNet-m on ChestX-Ray14 [8], highlighting the class-specific discriminative regions. The ground

truth bounding boxes are plotted over the heatmaps.
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