
MUXConv: Information Multiplexing in Convolutional Neural Networks

(Supplementary Material)

Zhichao Lu Kalyanmoy Deb Vishnu Naresh Boddeti

Michigan State University

{luzhicha, kdeb, vishnu}@msu.edu

In this supplementary material we include (1) MUXNet

hyperparameter search space in Section 1, (2) computa-

tional complexity of MUXNet and comparison to a com-

bination of 1 × 1 + 3 × 3 in Section 2, (3) effectiveness

of MUXNet as a backbone semantic segmentation in Sec-

tion 3.1, and (4) evaluation of generalization and robustness

properties of MUXNet in Section 3.2. Finally Fig. 7 shows

some qualitative object detection results on PASCAL VOC

2007, and Fig. 8 shows gradCam results on the ChestX-

Ray14 dataset.

1. Search Space

K E N K E G L K E N K E G L S

0 1 − 1 0 1 2 0 + 0 1 − 1 0 1 2 0 3 ⋯

Reduction Normal Reduction Normal

Stage 1 Stage 2

Figure 1: Search Space Encoding: Each stage is encoded as an integer

string. Genetic operations are performed on such encoding. See Table 1

for full details on the options.

To encode the hyperparameter settings for a model, we

first divide the model architectures into four stages, based

on the spatial resolution of each layer’s output feature map.

In each stage spatial resolution does not change. The first

layer in each stage reduces the feature map size by half.

For each stage, we search for kernel size (K) and expansion

ratio (E). In addition, from second layer in each stage, we

search for # of repetitions (N), # of input channels to com-

pute convolution (G), leave-out ratio in channel multiplex-

ing (L) and the spatial multiplexing setting (S) (see Fig. 1).

Table 1 summarizes the hyperparameters and available op-

tions for each stage. The obtained hyperparameters for our

MUXNets are visualized in Figure 2. The total volume of

the search space is approximately 14
12.

2. Computational Complexity

In this section, we analytically compare the computa-

tional complexity of our MUXConv block (Figure 3b) with

Hyperparameter Notation Options Stages

Normal

Blocks

Kernel size K {3, 5} {1, 2, 3, 4}

Expansion rate E {4, 6} {1, 2, 3, 4}

Group factor G {1, 2, 4} {1, 2, 3, 4}

Repetitions N {0, 1, 2, 3} {1, 2, 3, 4}

Leave-out ratio L {0.0, 0.25, 0.5} {1, 2, 3, 4}

Spatial Mux S
{0, [-1, 0, 0], [0, 0, 1],

[1, 0, 1], [-1, 0, 0, 1]}
{2, 3}

Reduction

Blocks

Kernel size K {3, [3, 5, 7], [3, 5, 7, 9]} {1, 2, 3, 4}

Expansion rate E {4, 6} {1, 2, 3, 4}

Table 1: Hyperparameter search space summary. The searched hyperpa-

rameters depend on both the block type—i.e. normal or reduction block,

and the stages. In case of spatial mutiplexing, option “-1" means subpixel

multiplexing, “1” means superpixel multiplexing, and “0” means no spa-

tial multiplexing. For instance, “[-1, 0, 1]” means applying subpixel to

1/3 of the input channels, superpixel to another 1/3 of the input channels,

and the remaining 1/3 are processed at the original resolution. And we

only apply spatial mutiplexing in stages two and three. For the kernel size

options in case of reduction blocks, we allow multiple parallel kernels to

down-sample the resolution, for example, “[3, 5, 7]” means three parallel

convolutions with kernel size of 3, 5, and 7.

the widely-used MobileNet block [6]. For simplicity, we ig-

nore the computation induced by the normalization and acti-

vation layers and we assume that for both blocks the number

of input and output channels is the same i.e., C channels.

1 x 1 conv

depth-wise

3 x 3 conv
+

1 x 1 conv

(a) Mobilenet block [6]

1 x 1 conv

group-wise

3 x 3 conv
+

1 x 1 conv

(b) MUXConv block

Figure 3: The visualization of the Mobilenet block (a) and our MUXConv

block (b).

The Mobilenet block consist of a 1 × 1 convolution to
expand the input channels, followed by a 3 × 3 depth-wise
separable convolution and another 1×1 convolution to com-
press the channels (see Figure 3a). We use E to denote
expansion rate. Then the total number of parameters and

1



−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−

↓

STEM

↓

DSConv_K3

↓

IB_E4_K3.5

↓

E6_K3_G1_L0.5

↓

IB_E4_K3.5.7

↓

E6_K5_G1_L0.5

↓

IB_E4_K3.5.7

↓

E6_K5_G2_L0.25

↓

IB_E6_K3

↓

3×224×224

16×112×112

16×56×56

32×28×28

32×28×28

48×14×14

48×14×14

96×7×7

96×7×7

112×7×7

×2

×2

×2

Primitive layers

(not searched)

Inverted Bottleneck

MUXConv Block

MUXConv Block w/

Channel Multiplexing only

(a) MUXNet-xs

−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−

↓

STEM

↓

DSConv_K3

↓

IB_E4_K3

↓

IB_E4_K3

↓

E4_K3_G2_L0.5

↓

IB_E4_K3

↓

E4_K5_G2_L0.5

↓

IB_E4_K3

↓

E4_K5_G2_L0.5

↓

IB_E6_K3

↓

E6_K5_G2_L0.5

↓

IB_E6_K3

↓

3×224×224

16×112×112

16×112×112

24×56×56

32×28×28

32×28×28

64×14×14

64×14×14

96×14×14

96×14×14

112×7×7

112×7×7

160×7×7

×2

×2

×2

×2

(b) MUXNet-s

↓

STEM

↓

DSConv_K3

↓

IB_E4_K3

↓

E4_K3_G2_L0.5

↓

IB_E4_K3.5.7

↓

E6_K3_G2_L0.5

↓

IB_E4_K3.5.7.9

↓

E6_K5_G2_L0.5

↓

IB_E6_K5

↓

E6_K5_G2_L0.5

↓

IB_E4_K3.5.7.9.11

↓

E6_K5_G2_L0.5

↓

IB_E6_K3

↓

3×224×224

24×112×112

24×112×112

24×56×56

24×56×56

40×28×28

40×28×28

80×14×14

80×14×14

112×14×14

112×14×14

160×7×7

160×7×7

200×7×7

×2

×2

×2

×2

×3

−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−

(c) MUXNet-m

−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−

↓

STEM

↓

DSConv_K3

↓

IB_E6_K3

↓

E6_K3_G2_L0.5

↓

IB_E6_K3.5.7

↓

E6_K5_G2_L0.5

↓

IB_E6_K3.5.7.9

↓

E6_K5_G2_L0.5

↓

IB_E6_K5

↓

E6_K5_G2_L0.5

↓

IB_E6_K3.5.7.9.11

↓

E6_K5_G2_L0.5

↓

IB_E6_K3

↓

3×224×224

24×112×112

24×112×112

24×56×56

24×56×56

40×28×28

40×28×28

80×14×14

80×14×14

120×14×14

120×14×14

160×7×7

160×7×7

200×7×7

×2

×3

×3

×3

×3

(d) MUXNet-l

Figure 2: The architectures of MUXNet-xs/s/m/l in Table 1 (main paper). All architectures share the same hyperparameter settings (except # of output

channels) for the blocks colored in yellow and they are fixed manually. The Dash lines indicate down-sampling points and we divide the architectures into

four main stages. We use E, K, G, and L to denote expansion rate, kernel size, number of channels per group and leave-out ratio, respectively. Blocks colored

in green use the inverted bottleneck structure proposed in [6]. Blocks colored in pink use both spatial and channel multiplexing and blocks colored in blue

only use channel multiplexing.

floating point operations are:

Params = C · EC
︸ ︷︷ ︸

1 × 1 conv

+ EC · 3 · 3
︸ ︷︷ ︸

3 × 3 d.w. conv

+EC · C
︸ ︷︷ ︸

1 × 1 conv

FLOPs = H ·W ·

(

C · EC·
︸ ︷︷ ︸

1 × 1 conv

+ EC · 3 · 3
︸ ︷︷ ︸

3 × 3 d.w. conv

+EC · C
︸ ︷︷ ︸

1 × 1 conv

)

On the other hand, our MUXConv block first select a subset of

the input channels to be processed, and the remaining portion is

directly propagated to the output. We use L to denote the ratio of

the leave-out un-processed channels. Then we use a 1 × 1 con-

volution to expand, followed by a group-wise convolution [9] and

another 1 × 1 convolution to compress (see Figure 3b). And we

use G to denote the group factor, which indicates the # of input

channels used for computing each output channel. For instance,

setting G equal to 1 is equivalent as using a depth-wise separable

convolution. The resulting number of parameters and the floating

point operations associated with our MUXConv block is:

Ĉ = (1− L) · C

Params = Ĉ · EĈ
︸ ︷︷ ︸

1 × 1 conv

+G · EĈ · 3 · 3
︸ ︷︷ ︸

3 × 3 group conv

+EĈ · Ĉ
︸ ︷︷ ︸

1 × 1 conv

FLOPs = H ·W ·

(

Ĉ · EĈ·
︸ ︷︷ ︸

1 × 1 conv

+G · EĈ · 3 · 3
︸ ︷︷ ︸

3 × 3 group conv

+EĈ · Ĉ
︸ ︷︷ ︸

1 × 1 conv

)

Figure 4 provides an visual comparison showing the ratio of

the number of parameters between our MUXConv block and Mo-

bilenet block as the group factor (G) and leave-out ratio (L) vary.

The choice of G and L hyperparameters we consider in our search

space (see Table 1) corresponds to computational complexity that

is less than the Mobilenet block (ratio ≤ 1, i.e. red color in Fig.4).



0 0.1 0.2 0.3 0.4 0.5

2

4

6

�

10

0.5

1

1.5

2

LHaYH­RXW�UaWLR

G
UR

XS
�I
aF

WR
U

Figure 4: Ratio of #Params between our MUXConv block and Mobilenet

block [6]. The search space that we consider for these two hyperparameters

is highlighted by a black box.

Network #MAdds #Params mIoU (%) Acc (%)

ResNet18 [2] + C1 1.8B 11.7M 33.82 76.05

MobileNetV2 [6] + C1 0.3B 3.5M 34.84 75.75

MUXNet-m + C1 0.2B 3.4M 32.42 75.00

ResNet18 + PPM 1.8B 11.7M 38.00 78.64

MobileNetV2 + PPM 0.3B 3.5M 35.76 77.77

MUXNet-m + PPM 0.2B 3.4M 35.80 76.33

Table 2: ADE20K [12] Semantic Segmentation Results. Since networks

in each section use the same segmentation head, we report the #MAdds and

#Params on the backbone models only. mIoU is the mean IoU and Acc is

the pixel accuracy. C1 use one convolution module as segmentation head

and PPM use the Pyramid Pooling Module from [10].

3. Additional Experiments

3.1. Semantic Segmentation

We further evaluate the effectiveness of our models as back-

bones for the task of mobile semantic segmentation. We com-

pare MUXNet-m with both MobileNetV2 [6] and ResNet18 [2]

on ADE20K [12] benchmark. Additionally, we also compare two

different segmentation heads. The first one, referred as C1, only

uses one convolution module. And the other one, Pyramid Pool-

ing Module (PPM), was proposed in [10]. All models are trained

under the same setup: we use SGD optimizer with initial learn-

ing rate 0.02, momentum 0.9, weight decay 1e-4 for 20 epochs.

Table 2 reports the mean IoU (mIoU) and pixel accuracy on the

ADE20K validation set. MUXNet-m performs comparably with

MobileNetV2 when paired with PPM, while being 1.5× more ef-

ficient in MAdds. We also provide qualitative visualization of se-

mantic segmentation examples in Figure 5.

3.2. Generalization and Robustness

To further evaluate the generalization performance of our pro-

posed models, we compare on a recently proposed benchmark

dataset, ImageNetV2 [5], complementary to the original ImageNet

2012. We use the MatchedFrequency version of the ImageNet-

V2. Figure 6a reports the top-5 accuracy comparison between

our MUXNets and a wide-range of previous models. Even though

there is a significant accuracy drop of 8% to 10% on ImageNet-V2

across models, the relative rank-order of accuracy on the origi-

nal ImageNet validation set translates well to the new ImageNet-

V2. And our MUXNet performs competitively on ImageNet-V2

as compared to other mobile models, such as ShuffleNetV2 [4],

MobileNetV2 [6] and MnasNet-A1 [7].

The vulnerability to small changes in query images has always

been a concern for designing better models. Hendrycks and Di-

etterich [3] recently introduced a new dataset, ImageNet-C, by

applying commonly observable corruptions (e.g., noise, weather,

compression, etc.) to the clean images from the original ImageNet

dataset. The new dataset contains images perturbed by 19 differ-

ent types of corruption at five different levels of severity. And

we leverage this dataset to evaluate the robustness of our pro-

posed models. Figure 6b compares Top-5 accuracy between our

MUXNet-m and four other representative models, designed both

manual and automatically. MUXNet-m performs favourably on

ImageNet-C, achieving better accuracy on 18 out of 19 corruption

types.

References

[1] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.

Williams, J. Winn, and A. Zisserman. The pascal visual ob-

ject classes challenge: A retrospective. International Journal

of Computer Vision, 111(1):98–136, Jan 2015. 5

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2016. 3

[3] Dan Hendrycks and Thomas Dietterich. Benchmarking neu-

ral network robustness to common corruptions and perturba-

tions. In International Conference on Learning Representa-

tions (ICLR), 2019. 3, 4

[4] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet v2: Practical guidelines for efficient cnn architec-

ture design. In European Conference on Computer Vision

(ECCV), 2018. 3

[5] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and

Vaishaal Shankar. Do imagenet classifiers generalize to im-

agenet? arXiv preprint arXiv:1902.10811, 2019. 3, 4

[6] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2018. 1,

2, 3

[7] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-

net: Platform-aware neural architecture search for mobile.

In IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2019. 3

[8] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mo-

hammadhadi Bagheri, and Ronald M Summers. Chestx-

ray8: Hospital-scale chest x-ray database and benchmarks

on weakly-supervised classification and localization of com-

mon thorax diseases. In IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), 2017. 5

[9] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep



Test

images

Ground

truth

MUXNet-m

+PPM

Figure 5: Examples from ADE20K validation set showing the ground truth (2nd row) and the scene parsing result (3rd row) from MUXNet-m. Color

encoding of semantic categories is available from here.

ShuffleNetV2

ResNet18

MUXNet­s (ours)

GoogLeNet

MobileNetV2

DARTS
MnasNet­A1

NASNet­A mobile

MUXNet­m (ours)

MUXNet­l (ours)

DenseNet­169

ResNeXt50 32x4d

78

80

82

84

86

88

90

92

94 ImageNet
ImageNet­V2

To
p­
5 
A
cc
ur
ac
y 
(%

)

10.0

8.8
9.5 8.6

8.9
9.1 9.1

8.1
8.3

8.2 7.8
7.7

(a) ImageNet-V2 [5]

brightness

contrast

defocus_blur

elastic_transform

fog frost
gaussian_blur

gaussian_noise

glass_blur

impulse_noise

jpeg_compression

motion_blur

pixelate

saturate

shot_noise

snow
spatter

speckle_noise

zoom_blur

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2
2.3

ShuffleNetV2
MobileNetV2
DARTS
MnasNet­A1
MUXNet­m

N
or
m
al
iz
ed
 T
op
­5
 A
cc
.

(b) ImageNet-C [3]

Figure 6: (a) Generalization performance on ImageNet-V2 (MatchedFrequency) [5]. Numbers in the boxes indicate the drop in accuracy. (b) Robustness

performance on ImageNet-C [3], which consist of ImageNet validation images corrupted by 19 commonly observable corruptions. Following the original

paper that proposed ImageNet-C, we normalized the top-5 accuracy by AlexNet’s Top-5 accuracy. DARTS is from the author’s public Github repository.

All other compared models are from Pytorch repository https://pytorch.org/docs/stable/torchvision/models.html.

neural networks. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2017. 2

[10] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang

Wang, and Jiaya Jia. Pyramid scene parsing network. In

https://github.com/CSAILVision/semantic-segmentation-pytorch
https://github.com/quark0/darts
https://pytorch.org/docs/stable/torchvision/models.html


Figure 7: Examples visualizing the detection performance of MUXNet-m on PASCAL VOC 2007 [1].

Atelectasis Cardiomegaly Effusion Infiltrate Pneumonia Pneumothorax

Figure 8: Examples of class activation map [11] of MUXNet-m on ChestX-Ray14 [8], highlighting the class-specific discriminative regions. The ground

truth bounding boxes are plotted over the heatmaps.



IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2017. 3

[11] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,

and Antonio Torralba. Learning deep features for discrimi-

native localization. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016. 5

[12] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fi-

dler, Adela Barriuso, and Antonio Torralba. Semantic under-

standing of scenes through the ade20k dataset. International

Journal of Computer Vision, 127(3):302–321, 2019. 3


