
NSGA-Net: Neural Architecture Search using Multi-Objective
Genetic Algorithm

Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar,
Kalyanmoy Deb, Erik Goodman and Wolfgang Banzhaf

Michigan State University
East Lansing, Michigan

{luzhicha,whalenia,vishnu,dhebarya,kdeb,goodman,banzhafw}@msu.edu

ABSTRACT
This paper introduces NSGA-Net – an evolutionary approach for
neural architecture search (NAS). NSGA-Net is designed with three
goals in mind: (1) a procedure considering multiple and conflict-
ing objectives, (2) an efficient procedure balancing exploration and
exploitation of the space of potential neural network architectures,
and (3) a procedure finding a diverse set of trade-off network archi-
tectures achieved in a single run. NSGA-Net is a population-based
search algorithm that explores a space of potential neural network
architectures in three steps, namely, a population initialization step
that is based on prior-knowledge from hand-crafted architectures,
an exploration step comprising crossover and mutation of architec-
tures, and finally an exploitation step that utilizes the hidden useful
knowledge stored in the entire history of evaluated neural archi-
tectures in the form of a Bayesian Network. Experimental results
suggest that combining the dual objectives of minimizing an error
metric and computational complexity, as measured by FLOPs, al-
lows NSGA-Net to find competitive neural architectures. Moreover,
NSGA-Net achieves error rate on the CIFAR-10 dataset on par with
other state-of-the-art NAS methods while using orders of magni-
tude less computational resources. These results are encouraging
and shows the promise to further use of EC methods in various
deep-learning paradigms.

KEYWORDS
Deep Learning, Image classification, Neural Architecture Search,
multi objective, Bayesian Optimization

1 INTRODUCTION
Deep convolutional neural networks have been overwhelmingly suc-
cessful in a variety of image analysis tasks. One of the key driving
forces behind this success is the introduction of many CNN archi-
tectures, such as AlexNet [25], VGG [41], GoogLeNet [43], ResNet
[14], DenseNet [19] etc. in the context of image classification. Con-
currently, network designs such as MobileNet [16], XNOR-Net [38],
BinaryNets [6], LBCNN [21] etc. have been developed with the goal
of enabling real-world deployment of high performance models on
resource constrained devices. These developments are the fruits of
years of painstaking efforts and human ingenuity.

Neural architecture search (NAS) methods, on the other hand,
seek to automate the process of designing network architectures.
State-of-the-art reinforcement learning (RL) methods like [40] and
[51] are inefficient in their use of their search space and require
3,150 and 2,000 GPU days, respectively. Gradient-based methods
like [29] focus on the single objective of minimizing an error metric

on a task and cannot be easily adapted to handle multiple conflicting
objectives. Furthermore, most state-of-the-art approaches search
over a single computation block, similar to an Inception block [43],
and repeat it as many times as necessary to form a complete network.

In this paper, we present NSGA-Net, a multi-objective genetic
algorithm for NAS to address the aforementioned limitations of
current approaches. A pictorial overview of NSGA-Net is provided
in Figure 1. The salient features of NSGA-Net are,

(1) Multi-Objective Optimization: Real-world deployment of
NAS models demands small-sized networks, in addition the
models being accurate. For instance, we seek to maximize
performance on compute devices that are often constrained by
hardware resources in terms of power consumption, available
memory, available FLOPs, and latency constraints, to name
a few. NSGA-Net is explicitly designed to optimize such
competing objectives.

(2) Flexible Architecture Search Space: The search space for
most existing methods is restricted to a block that is repeated
as many times as desired. In contrast, NSGA-Net searches
over the entire structure of the network. This scheme over-
comes the limitations inherent in repeating the same com-
putation block throughout an entire network, namely, that a
single block may not be optimal for every application and
it is desirable to allow NAS to discover architectures with
different blocks in different parts of the network.

(3) Non-Dominated Sorting: The core component of NSGA-
Net is the Non-Dominated Sorting Genetic Algorithm II
(NSGA-II) [7], a multi-objective optimization algorithm that
has been successfully employed for solving a variety of multi-
objective problems [34, 44]. Here, we leverage its ability to
maintain a diverse trade-off frontier between multiple con-
flicting objectives, thereby resulting in a more effective and
efficient exploration of the search space.

(4) Efficient Recombination: In contrast to state-of-the-art evolution-
based NAS methods [39, 40] in which only mutation is used,
we employ crossover (in addition to mutation) to combine
networks with desirable qualities across multiple objectives
from the diverse frontier of solutions.

(5) Bayesian Learning: We construct and employ a Bayesian
Network inspired by the Bayesian Optimization Algorithm
(BOA) [35] to fully utilize the promising solutions present
in our search history archive and the inherent correlations
between the layers of the network architecture.

We demonstrate the efficacy of NSGA-Net on the CIFAR10 [24]
image classification task by minimizing two objectives: classification



Evaluator Multi-Obj GA BOA
𝑝(𝑥$

% |𝑥$
' )

[0-00-111-0111-00000-0]

Trade-off	Front

complexity

error
Encoding

[1-01-001]

Figure 1: Overview of the stages of NSGA-Net. Networks are represented as bit strings, trained through gradient descent, ranking
and selection by NSGA-II, search history exploitation through BOA. Output is a set of networks that span a range of complexity and
error objectives.

error and computational complexity. Here, computational complex-
ity is defined by the number of floating-point operations (FLOPs)
that a network carries out during a forward pass. Experimentally,
we observe that NSGA-Net can find a set of network architectures
containing solutions that are significantly better than hand-crafted
methods in both objectives, while being competitive with single
objective state-of-the-art NAS approaches. Furthermore, by fully
utilizing a population of networks through recombination and uti-
lization of the search history, NSGA-Net explores the search space
efficiently and requires less computational time for search than other
competing methods. The implementation of NSGA-Net is available
here*.

2 RELATED WORK
Recent research efforts in NAS have produced a plethora of methods
to automate the design of networks. Broadly speaking, these methods
can be divided into evolutionary algorithm (EA) and reinforcement
learning (RL) based approaches – with a few methods falling outside
these two categories. The main motivation of EA methods is to treat
structuring a network as a combinatorial optimization problem. EAs
operate with a population that makes small changes (mutation) and
mixes parts (crossover) of solutions selected by consideration of
multiple objectives to guide its search toward the optimal solutions.
RL, on the other hand, views the construction of a network as a
decision process. Usually, an agent is trained to optimally choose
the pieces of a network in a particular order. We briefly review a few
existing methods here.

Reinforcement Learning:Q-learning [45] is a widely popular value
iteration method used for RL. The MetaQNN method [1] employs
an ϵ-greedy Q-learning strategy with experience replay to search
connections between convolution, pooling, and fully connected lay-
ers, and the operations carried out inside the layers. Zhong et al. [49]
extended this idea with the BlockQNN method. BlockQNN searches
the design of a computational block with the same Q-learning ap-
proach. The block is then repeated to construct a network. This
method allows for a much more general network and achieves better
results than its predecessor on CIFAR-10 [24].

A policy gradient method seeks to approximate some not differ-
entiable reward function to train a model that requires parameter
gradients, like a neural network architecture. Zoph and Le [50] first
applied this method in architecture search to train a recurrent neural

*https://github.com/ianwhale/nsga-net

network controller that constructs networks. The original method in
[50] uses the controller to generate the entire network at once. This
contrasts from its successor, NASNet [51], which designs a convo-
lutional and pooling block that is repeated to construct a network.
NASNet outperforms its predecessor and produces a network achiev-
ing state-of-the-art error rate on CIFAR-10. NSGA-Net differs from
RL methods by using more than one selection criteria. More specifi-
cally, networks are selected for their accuracy on a task, rather than
an approximation of accuracy, along with computational complexity.
Furthermore, the most successful RL methods search only a compu-
tational block that is repeated to create a network, NSGA-Net allows
for search across computational blocks and combinations of blocks.
Hsu et al. [17] extends the NASNet approach to multi-objective
domain to optimize multiple linear combinations of accuracy and
energy consumption criteria for different scalarization parameters.
However, multiple generative applications of a scalarized objectives
was shown to be not as efficient as simultaneous approaches [7].

Evolutionary Algorithms: Designing neural networks through evo-
lution, or neuroevolution, has been a topic of interest for some time,
first showing popular success in 2002 with the advent of the neu-
roevolution of augmenting topologies (NEAT) algorithm [42]. In its
original form, NEAT only performs well on comparatively small net-
works. Miikkulainen et al. [32] attempted to extend NEAT to deep
networks with CoDeepNEAT using a co-evolutionary approach that
achieved limited results on the CIFAR-10 dataset. CoDeepNEAT
does, however, produce state-of-the-art results in the Omniglot multi-
task learning domain [26].

Real et al. [40] introduced perhaps the first truly large scale ap-
plication of a simple evolutionary algorithm. The extension of this
method presented in [39], called AmoebaNet, provided the first large
scale comparison of EC and RL methods. Their simple EA searches
over the same space as NASNet [51] and has shown to have a faster
convergence to an accurate network when compared to RL and ran-
dom search. Furthermore, AmoebaNet produced one of the best
state-of-the-art results on CIFAR-10 data-set.

Conceptually, NSGA-Net is closest to the Genetic CNN [47]
algorithm. It uses a binary encoding that corresponds to connections
in convolutional blocks. In NSGA-Net, we augment the original
encoding and genetic operations by (1) adding an extra bit for a
residual connection, and (2) introducing phase-wise crossover. We
also introduce a multi-objective based selection scheme. Moreover,
we also diverge from Genetic CNN by incorporating a Bayesian

2



In
p
u
t

2 3 6

5 P
o
ol
in
g 2

4

5

1

3

6

P
o
ol
in
g

1

2

3

4 5

A
v
g
P
o
o
li
n
g

L
in
ea
r

x
(1)
o =0-01-000-0010-00101-0 x

(2)
o =0-00-000-0101-10101-0 x

(3)
o =0-00-111-0111-00000-1

Figure 2: Encoding: Illustration of a classification network encoded by x = xo, where xo is the operations at a phase (gray boxes, each
with a possible maximum of 6 nodes). In this example the spatial resolution changes (orange boxes that connect the phases) are fixed
based on prior knowledge of successful approaches. The phases are described by the bit string xo which is formatted for readability
above. The bits are grouped by dashes to describe what node they control. See Section 3.1 for detailed description of the encoding
schemes.

network in our search to fully utilize past population history as
learned knowledge.

Evolutionary multi-objective optimization (EMO) approaches
have been scarcely used for NAS. Kim et al. [23] presents an algo-
rithm utilizing NSGA-II [7], however their method only searches
over hyper-parameters and a small fixed set of architectures. The
evolutionary method shown in [10] uses weight sharing through net-
work morphisms [46] and approximate morphisms as mutations and
uses a biased sampling to select for novelty from the objective space
rather than a principled selection scheme, like NSGA-II [7]. Net-
work morphisms allow for a network to be “widened" or “deepened"
in a manner that maintains functional equivalence. For architecture
search, this allows for easy parameter sharing after a perturbation in
a network’s architecture.

Other Methods: Methods that do not subscribe to either an EA or
RL paradigm have also shown success in architecture search. Liu
et al. [27] presents a method that progressively expands networks
from simple cells and only trains the best K networks that are pre-
dicted to be promising by a RNN meta-model of the encoding space.
Dong et al. [9] extended this method to use a multi-objective ap-
proach, selected the K networks based on their Pareto-optimality
when compared to other networks. Hsu et al. [18] also presents a
meta-modeling approach that generates models with state-of-the-art
accuracy. This approach may be ad-hoc as no analysis is presented
on how the progressive search affects the trade-off frontier. Elsken
et al. [11] use a simple hill climbing method along with a network
morphism [46] approach to optimize network architectures quickly
on limited resources. Chen et al. [5] combine the ideas of RL and
EA. A population of networks is maintained and are selected for mu-
tation with tournament selection [13]. A recurrent network is used as
a controller to learn an effective strategy to apply mutations to net-
works. Networks are then trained and the worst performing network
in the population is replaced. This approach generates state of the art
results for the ImageNet classification task. Chen et al. [3] presented
an augmented random search approach to optimize networks for a
semantic segmentation application. Kandasamy et al. [22] presents a
Gaussian process based approach to optimize network architectures,
viewing the process through a Bayesian optimization lens.

3 PROPOSED APPROACH
Compute devices are often constrained by hardware resources in
terms of their power consumption, available memory, available

FLOPs, and latency constraints. Hence, real-world design of DNNs
are required to balance these multiple objectives (e.g., predictive
performance and computational complexity). Often, when multiple
design criteria are considered simultaneously, there may not exist
a single solution that performs optimally in all desired criteria, es-
pecially with competing objectives. Under such circumstances, a
set of solutions that provide representative trade-off information
between the objectives is more desirable. This enables a practitioner
to analyze the importance of each criterion, depending on the appli-
cation, and to choose an appropriate solution on the trade-off frontier
for implementation. We propose NSGA-Net, a genetic algorithm
based architecture search method to automatically generate a set of
DNN architectures that approximate the Pareto-front between per-
formance and complexity on an image classification task. The rest of
this section describes the encoding scheme, and main components
of NSGA-Net in detail.

3.1 Encoding
Genetic algorithms, like any other biologically inspired search meth-
ods, often do not directly operate on phenotypes. From the biological
perspective, we may view the DNN architecture as a phenotype, and
the representation it is mapped from as its genotype. As in the natural
world, genetic operations like crossover and mutation are only car-
ried out in the genotype space; such is the case in NSGA-Net as well.
We refer to the interface between the genotype and the phenotype as
encoding in this paper.

Most existing CNN architectures can be viewed as a composition
of computational blocks that define the layer-wise computation (e.g.
ResNet blocks [14], DenseNet block [19], and Inception block [43],
etc.) and a scheme that specifies the spatial resolution changes. For
example, down-sampling is often used after computational blocks
to reduce the spatial resolution of information going into the next
computational blocks in image classification DNNs. In NSGA-Net,
each computational block, referred to as a phase, is encoded using
the method presented by Xie and Yuille [47], with the small change
of adding a bit to represent a skip connection that forwards the input
information directly to the output bypassing the entire block. And
we name it as the Operation Encoding xo in this study.

Operation Encoding xo: Unlike most of the hand-crafted and NAS
generated architectures, we do not repeat the same phase (compu-
tational block) to construct a network. Instead, the operations of

a network are encoded by xo =
(
x(1)
o , x

(2)
o , . . . , x

(np)
o

)
where np is

3



Parent 1

1

2 3

4

⊗

Parent 2

1

2 3

4

=

Child

1

2 3

4

(Parent 2) DenseNet: 1-11-111-0

(Parent 1) VGG: 1-01-001-0

——————————————
(Child) ResNet: 1-01-101-0

: common

: VGG

: DenseNet

Figure 3: Crossover Example: A crossover (denoted by ⊗) of a VGG-like structure with a DenseNet-like structure may result in a
ResNet-like network. In the figure, red and blue denotes connections that are unique to VGG and DenseNet respectively, and black
shows the connections that are common to both parents. All black bits are retained in the final child encoding, and only the bits that
are not common between the parents can potentially be selected at random from one of the parent.

the number of phases. Each x(i)
o encodes a directed acyclic graph

consisting of no number of nodes that describes the operation within
a phase using a binary string. Here, a node is a basic computational
unit, which can be a single operation like convolution, pooling,
batch-normalization [20] or a sequence of operations. This encoding
scheme offers a compact representation of the network architectures
in genotype space, yet is flexible enough that many of the computa-
tional blocks in hand-crafted networks can be encoded, e.g. VGG
[41], ResNet [14] and DenseNet [19]. Figure 2 and Figure 3 shows
examples of the operation encoding.

Search Space: With a pre-determined scheme of spatial resolution
reduction (similarly in [29, 39, 51]), the total search space in the
genotype space is governed by our operation encoding xo:

Ωx = Ωxo = np × 2no (no−1)/2+1

where np is the number of phases (computational blocks), and no
is the number of nodes (basic computational units) in each phase.
However, for computationally tractability, we constrain the search
space such that each node in a phase carries the same sequence of
operations, i.e. a 3 × 3 convolution followed by batch-normalization
[20] and ReLU.

It is worth noting that, as a result of nodes in each phase having
identical operations, the encoding between genotype and pheno-
type is a many-to-one mapping. Given the prohibitive computational
expense required to train each network architecture before its perfor-
mance can be assessed, it is essential to avoid evaluating genomes
that decode to the same architecture. We develop an algorithm to
quickly and approximately identify these duplicate genomes (see
Appendix for details).

3.2 Search Procedure
NSGA-Net is an iterative process in which initial solutions are made
gradually better as a group, called a population. In every iteration, the
same number of offspring (new network architectures) are generated
from parents selected from the population. Each population member
(including both parents and offspring) compete for both survival
and reproduction (becoming a parent) in the next iteration. The

initial population may be generated randomly or guided by prior-
knowledge (e.g. seeding the hand-crafted network architectures into
the initial population). Following initialization, the overall NSGA-
Net search proceeds in two sequential stages, an exploration and
exploitation.

Exploration: The goal of this stage is to discover diverse ways of
connecting nodes to form a phase (computational block). Genetic
operations, crossover and mutation, offer an effective mean to realize
this goal.

Crossover: The implicit parallelism of population-based search ap-
proaches can be unlocked when the population members can effec-
tively share (through crossover) building-blocks [15]. In the context
of NAS, a phase or the sub-structure of a phase can be viewed as
a building-block. We design a homogeneous crossover operator,
which takes two selected population members as parents, to create
offspring (new network architectures) by inheriting and recombining
the building-blocks from parents. The main idea of this crossover op-
erator is to 1) preserve the common building-blocks shared between
both parents by inheriting the common bits from both parents’ binary
bit-strings; 2) maintain, relatively, the same complexity between the
parents and their offspring by restricting the number of “1" bits in
the offspring’s bit-string to lie between the number of “1" bits in
both parents. The proposed crossover allows selected architectures
(parents) to effectively exchange phases or sub-structures within a
phase. An example of the crossover operator is provided in Figure 3.

Mutation: To enhance the diversity (having different network ar-
chitectures) of the population and the ability to escape from local
optima, we use a bit-flipping mutation operator, which is commonly
used in binary-coded genetic algorithms. Due to the nature of our
encoding, a one bit flip in the genotype space could potentially
create a completely different architecture in the phenotype space.
Hence, we restrict the number of bits that can be flipped to be at
most one for each mutation operation. As a result, only one of the
phase architectures can be mutated at one time.

Exploitation: The exploitation stage follows the exploration stage
in NSGA-Net. The goal of this stage is to exploit and reinforce the

4



p
(
x
(1)
o

)
p
(
x
(3)
o

∣∣∣x(2)
o

)
p
(
x
(2)
o

∣∣∣x(1)
o

)

x̂
(1)
o =0-01-000-0010-00101-0 x̂

(3)
o =0-00-111-0111-00000-1x̂

(2)
o =0-00-000-0101-10101-0

Figure 4: Exploitation: Sampling from the Bayesian Network (BN) constructed by NSGA-Net. The histograms represent estimates
of the conditional distributions between the network structure between the phases explored during the exploration step and updated
during the exploitation step (i.e., using the population archive). During exploitation, networks are constructed by sampling phases
from the BN. Fig. 2 shows the architectures that the sampled bit strings, {x̂ (1)

o , x̂
(2)
o , x̂

(3)
o } decode to.

patterns commonly shared among the past successful architectures
explored in the previous stage. The exploitation step in NSGA-Net
is heavily inspired by the Bayesian Optimization Algorithm (BOA)
[35] which is explicitly designed for problems with inherent cor-
relations between the optimization variables. In the context of our
NAS encoding, this translates to correlations in the blocks and paths
across the different phases. Exploitation uses past information across
all networks evaluated to guide the final part of the search. More
specifically, say we have a network with three phases, namely x(1)

o ,
x(2)
o , and x(3)

o . We would like to know the relationship of the three
phases. For this purpose, we construct a Bayesian Network (BN)
relating these variables, modeling the probability of networks be-
ginning with a particular phase x(1)

o , the probability that x(2)
o follows

x(1)
o , and the probability that x(3)

o follows x(2)
o . In other words, we

estimate the distributions p
(
x(1)
o

)
, p

(
x(2)
o |x(1)

o

)
, and p

(
x(3)
o |x(2)

o

)
by

using the population history, and update these estimates during the
exploitation process. New offspring solutions are created by sam-
pling from this BN. Figure 4 shows a pictorial depiction of this
process.

4 EXPERIMENTS
In this section, we explain the experimental setup and implemen-
tation details of NSGA-Net, followed by the empirical results to
demonstrate the efficacy of NSGA-Net to automate the NAS process
on image classification task.

4.1 Performance Metrics
We consider two objectives to guide NSGA-Net based NAS, namely,
classification error and computational complexity. A number of
metrics can serve as proxies for computational complexity: number
of active nodes, number of active connections between the nodes,
number of parameters, inference time and number of floating-point
operations (FLOPs) needed to execute the forward pass of a given
network. Our initial experiments considered each of these different
metrics. We concluded from extensive experimentation that inference
time cannot be estimated reliably due differences and inconsistencies
in computing environment, GPU manufacturer, temperature, etc.
Similarly, the number of parameters, active connections or active
nodes only relate to one aspect of computational complexity. In

contrast, we found an estimate of FLOPs to be a more accurate
and reliable proxy for network complexity. See Appendix for more
details. Therefore, classification error and FLOPs serve as the twin
objectives for selecting networks.

For the purpose of quantitatively comparing different multi - ob-
jective search methods or different configuration setups of NSGA-
Net, we use the hypervolume (HV) performance metric, which calcu-
lates the dominated area (hypervolume in the general case) from the
a set of solutions (network architectures) to a reference point which
is usually an estimate of the nadir point—a vector concatenating
worst objective values of the Pareto-frontier. It has been proven that
the maximum HV can only be achieved when all solutions are on the
Pareto-frontier [12]. Hence, the higher the HV measures, the better
solutions that are being found in terms of both objectives.

4.2 Implementation Details
Dataset: We consider the CIFAR-10 [24] dataset for our classifi-
cation task. We split the original training set (80%-20%) to create
our training and validation sets for architecture search. The original
CIFAR-10 testing set is only utilized at the conclusion of the search
to obtain the test accuracy for the models on the final trade-off front.

NSGA-Net hyper-parameters: We set the number of phases np
to three and the number of nodes in each phase no to six. We also fix
the spatial resolution changes scheme similarly as in [51], in which
a max-pooling with stride 2 is placed after the first and the second
phase, and a global average pooling layer after the last phase. The
initial population is generated by uniform random sampling. The
probabilities of crossover and mutation operations are set at 0.9 and
0.02 respectively. The population size is 40 and the number of gen-
erations is 20 for the exploration stage. And another ten generations
for exploitation. Hence, a total of 1,200 network architectures are
searched by NSGA-Net.

Network training during searching: During architecture search,
we limit the number of filters (channels) in any node to 16 for each
one of the generated network architecture. We then train them on
our training set using standard stochastic gradient descent (SGD)
back-propagation algorithm and a cosine annealing learning rate
schedule [30]. Our initial learning rate is 0.025 and we train for 25
epochs, which takes about 9 minutes on a NVIDIA 1080Ti GPU

5



implementation in PyTorch [33]. Then the classification error is
measured on our validation set.

4.3 Architecture Validation
For comparing with other single-objective NAS methods, we adopt
the training procedure used in [29] and a quick summary is given as
follows.

We extend the number of epochs to 600 with a batch-size of 96 to
train the final selected models (could be the entire trade-off frontier
architectures or a particular one chosen by the decision-maker). We
also incorporate a data pre-processing technique cutout [8], and a
regularization technique scheduled path dropout introduced in [51].
In addition, to further improve the training process, an auxiliary
head classifier is appended to the architecture at approximately 2/3
depth (right after the second resolution-reduction operation). The
loss from this auxiliary head classifier, scaled by a constant factor
0.4, is aggregated with the loss from the original architecture before
back-propagation during training. Other hyper-parameters related
to the back-propagation training remain the same as during the
architecture search.

For the fairness of the comparison among various NAS methods,
we incorporate the NASNet-A cell [51], the AmoebaNet-A cell [39]
and the DARTS(second order) cell [29] into our training procedures
and report their results under the same settings as NSGA-Net found
architectures.

4.4 Results Analysis
We first present the overall search progression of NSGA-Net in
the objective-space. Figure 5 shows the bi-objective frontiers ob-
tained by NSGA-Net through the various stages of the search, clearly
showcasing a gradual improvement of the whole population. Fig-
ure 6 shows two metrics: normalized HV and offspring survival rate,
through the different generations of the population. The monotonic
increase in the former suggests that a better set of trade-off network
architectures have been found over the generations. The monotonic
decrease in the latter metric suggests that, not surprisingly, it is
increasingly difficult to create better offspring (than their parents).
We can use a threshold on the offspring survival rate as a potential
criterion to terminate the current stage of the search process and
switch between the exploration and exploitation.

To compare the network architecture obtained from NSGA-Net
to other hand-crafted and search-generated architectures, we pick
the network architectures with the lowest classification error from
the final frontier (the dot in the lower right corner on the green curve
in Figure 5) and extrapolate (by following the setup as explained
in Section 4.3) the network by increasing the number of filters of
each node in the phases, and train with the entire official CIFAR-10
training set. The chosen network architecture, shown in Figure 2,
results in 3.85% classification error on the CIFAR-10 testing set with
3.34 Millions of parameters and 1290 MFLOPs. Table 1 provides a
summary that compares NSGA-Net with other multi-objective NAS
methods. Unfortunately, hypervolume comparisons between these
multi-objective NAS methods are not feasible due to the following
two reasons: 1) The entire trade-off frontiers obtained by the other
multi-objective NAS methods are not reported and 2) different objec-
tives were used to estimate the complexity of the architectures. Due

Figure 5: Progression of trade-off frontiers after each stage of
NSGA-Net.

Figure 6: Generational normalized hypervolume and survival
rate of the offspring network architectures.

Table 1: Multi-objective methods for CIFAR-10 (best accuracy
for each method)

Method Error (%) Other Objective Compute

PPP-Net [9] 4.36
FLOPs or

Params or Inference Time Nvidia Titan X

MONAS [17] 4.34 Power Nvidia 1080Ti

NSGA-Net 3.85 FLOPs
Nvidia 1080Ti
8 GPU Days

to space limitation, the other architectures on the trade-off frontier
found by NSGA-Net are reported in Appendix.

The CIFAR-10 results comparing state-of-the-art CNN architec-
tures from both human-designed and search-generated are presented
in Table 2. NSGA-Net achieves comparable results with state-of-the-
art architectures designed by human experts [19] while having order
of magnitude less parameters in the obtained network architecture.
When compared with other state-of-the-art RL- and evolution-based
NAS methods [39, 51], NSGA-Net achieves similar performance by
using two and half orders of magnitude less computation resources
(GPU-days). Even though NSGA-Net falls short in search efficiency
when compared to the gradient-based NAS method DARTS [29]

6



Figure 7: Normal and reduction convolutional cell architectures found by NSGA-Net applied to NASNet micro search space. The
inputs (green) are from previous cells’ output (or input image). The output (yellow) is the results of a concatenation operation across
all resulting branches. Each edge (line with arrow) indicates an operation with operation name annotated above the line.

Table 2: Comparison of NSGA-Net with baselines on CIFAR-10 image classification. In this table, the first block presents state-of-the-
art architectures designed by human experts. The second block presents NAS methods that design the entire network. The last block
presents NAS methods that design modular blocks which are repeatedly combined to form the final architecture. We use (N @ F) to
indicate the configuration of each model, where N is the number of repetition and F is the number of filters right before classification.
Results marked with † are obtained by training the corresponding architectures with our setup (refers to Section 4.3 for details).

Architectures Params Test Error × + Search Cost Search
(M) (%) (M) (GPU-days) Method

Wide ResNet [48] 36.5 4.17 - - human experts
DenseNet-BC (k = 40) [19] 25.6 3.47 - - human experts

NAS [50] 7.1 4.47 - 3150 RL
NAS + more filters[50] 37.4 3.65 - 3150 RL
ENAS + macro search space [36] 21.3 4.23 - 0.5 RL + weight sharing
ENAS + macro search space + more channels [36] 38.0 3.87 - 0.5 RL + weight sharing

NSGA-Net + macro search space 3.3 3.85 1290 8 evolution

DARTS second order + cutout [29] 3.3 2.76 - 4 gradient-based
DARTS second order (6 @ 576) + cutout [29] † 3.3 2.76 547 4 gradient-based
NASNet-A + cutout [51] 3.3 2.65 - 2,000 RL
NASNet-A (6 @ 660) + cutout [51] † 3.2 2.91 532 2,000 RL
ENAS + cutout [36] 4.6 2.89 - 0.5 RL + weight sharing
ENAS (6 @ 660) + cutout [36] † 3.3 2.75 533 0.5 RL + weight sharing
AmoebaNet-A [39] 3.2 3.34 - 3,150 evolution
AmoebaNet-A (6 @ 444) + cutout [39] † 3.3 2.77 533 3,150 evolution

NSGA-Net (6 @ 560) + cutout 3.3 2.75 535 4 evolution
NSGA-Net (7 @ 1536) + cutout 26.8 2.50 4147 4 evolution

despite a slight advantage in test error, it’s worth noting that NSGA-
Net inherently delivers many other architectures from the trade-off
frontier at no extra cost. The corresponding architectures found by
NSGA-Net are provided in Figure 2 and Figure 7 for macro search
space and NASNet micro search space respectively.

4.5 Transferability
We consider CIFAR-100 dataset [24] for evaluating the tranferability
of the found architecture by NSGA-Net. We use the same training

setup as explained in Section 4.3 on CIFAR-10 dataset. The training
takes about 1.5 days on a single 1080Ti GPU. Results shown in
Table 3 suggest that the learned architecture from searching on
CIFAR-10 is transferable to CIFAR-100. The architecture found by
NSGA-Net achieves comparable performance to both the human-
designed and RL-search generated architectures [48, 49] with 10x
and 2x less number of parameters respectively.

7



(a) (b) (c)

Figure 8: (a) Trade-off frontier comparison between random search and NSGA-Net. (b) Trade-off frontier comparison with and
without crossover. (c) Comparison between sampling from uniformly from the encoding space and the Bayesian Network constructed
from NSGA-Net exploration population archive.

Table 3: Comparison with different classifiers on CIFAR-100.

Architectures Params Test Error GPU Search
(M) (%) Days Method

Wide ResNet [48] 36.5 20.50 - manual
Block-QNN-S [49] 6.1 20.65 96 RL
Block-QNN-S* [49] 39.8 18.06 96 RL
NSGA-Net 3.3 20.74 8 evolution
NSGA-Net* 11.6 19.83 8 evolution
*denotes architectures with extended number of filters

4.6 Ablation Studies
Here, we first present results comparing NSGA-Net with uniform
random sampling (RSearch) from our encoding as a sanity check. It’s
clear from Figure 8a that much better set of network architectures
are obtained using NSGA-Net. Then we present additional results to
showcase the benefits of the two main components of our approach:
crossover and Bayesian network based offspring creation.

Crossover Operator: Current state-of-the-art NAS search results
[28, 39] using evolutionary algorithms use mutation alone with
enormous computation resources. We quantify the importance of
crossover operation in an EA by conducting the following small-
scale experiments on CIFAR-10. From Figure 8b, we observe that
crossover helps achieve a better trade-off frontier.

Bayesian Network (BN) based Offspring Creation: Here we quan-
tify the benefits of the exploitation stage i.e., off-spring creation by
sampling from BN. We uniformly sampled 120 network architec-
tures each from our encoding and from the BN constructed on the
population archive generated by NSGA-Net at the end of exploration.
The architectures sampled from the BN dominate (see Fig.8c) all
network architectures created through uniform sampling.

4.7 Discussion
We analyze the intermediate solutions of our search and the trade-off
frontiers and make some observations. Upon visualizing networks,
like the one in Figure 2, we observe that as network complexity
decreases along the front, the search process gravitates towards re-
ducing the complexity by minimizing the amount of processing at
higher image resolutions i.e., remove nodes from the phases that are

closest to the input to the network. As such, NSGA-Net outputs a set
of network architectures that are optimized for wide range of com-
plexity constraints. On the other hand, approaches that search over a
single repeated computational block can only control the complexity
of the network by manually tuning the number of repeated blocks
used. Therefore, NSGA-Net provides a more fine-grained control
over the two objectives as opposed to the control afforded by arbi-
trary repetition of blocks. Moreover, some objectives, for instance
susceptibility to adversarial attacks, may not be easily controllable
by simple repetition of blocks. A subset of networks discovered on
the trade-off frontier for CIFAR-10 is provided in Appendix.

5 CONCLUSIONS
This paper presented NSGA-Net, a multi-objective evolutionary ap-
proach for neural architecture search. NSGA-Net affords a number of
practical benefits: (1) the design of neural network architectures that
can effectively optimize and trade-off multiple competing objectives,
(2) advantages afforded by population-based methods being more
effective than optimizing weighted linear combination of objectives,
(3) more efficient exploration and exploitation of the search space
through a customized crossover scheme and leveraging the entire
search history through BOA, and finally (4) output a set of solutions
spanning a trade-off front in a single run. Experimentally, by opti-
mizing both prediction performance and computational complexity
NSGA-Net finds networks that are significantly better than hand-
crafted networks on both objectives and is compares favorably to
other state-of-the-art single objective NAS methods for classification
on CIFAR-10.

ACKNOWLEDGEMENT
This material is based in part upon work supported by the Na-
tional Science Foundation under Cooperative Agreement No. DBI-
0939454. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

6 APPENDIX
6.1 Duplicate Checking and Removal
Due to the directed acyclic nature of our encoding, redundancy exists
in the search space defined by our coding, meaning that there exist

8



4 5 6
Number of allowed nodes in each phase

60

65

70

75

80

Re
du

nd
an

cy
 (%

)

Figure 9: Increase in redundancy as node count increases.

multiple encoding strings that decode to the same network architec-
ture. Empirically, we have witnessed the redundancy becomes more
and more severe as the allowed number of nodes in each phase’s
computational block increase, as shown in Figure 9.

Since the training of a deep network is a computationally taxing
task, it is essential to avoid the re-computation of the same architec-
ture. In this section, we will provide with an overview of an algorithm
we developed to quickly and approximately do a duplicate-check on
genomes. The algorithm takes two genomes to be compared as an
input, and outputs a flag to indicate if the supplied genomes decode
to same architecture.

In general, comparing two graphs is NP-hard, however, given that
we are working with Directed Acyclic Graphs with every node being
the same in terms of operations, we were able to design an efficient
network architecture duplicate checking method to identify most of
the duplicates if not all. The method is built on top of simply intuition
that under such circumstances, the duplicate network architectures
should be identified by swapping the node numbers. Examples are
provided in Figure 10. Our duplicates checking method first derive
the connectivity matrix from the bit-string, which will have positive
1 indicating there is an input to that particular node and negative 1
indicating an output from that particular node. Then a series row-
and-column swapping operation takes place, which essentially try to
shuffle the node number to check if two connectivity matrix can be
exactly matched. Empirically, we have found this method performs
very efficiently in identifying duplicates. An example of different
operation encoding bit-strings decode to the same network phase is
provided in Figure 10.

6.2 Architecture Complexity Estimation
We argue that the choice of inference time or number of parameters
as proxies for computational complexity are sub-optimal and ineffec-
tive in practice. In fact, we initially considered both of these objec-
tives. We concluded from extensive experimentation that inference
time cannot be estimated reliably due differences and inconsistencies
in computing environment, GPU manufacturer, and GPU tempera-
ture etc. Similarly, the number of parameters only relates one aspect
of computational complexity. Instead, we chose to use the number
of floating-point operations (FLOPs) for our second objective. The
following table compares the number of active nodes, the number of

1

2

3

4

5

6 1

2

3

6

4

5 1

3

2

5

4

6

1 2 3 4 5 6

1 0 1 1 0 0 0

2 -1 0 0 1 0 1

3 -1 0 0 1 1 1

4 0 -1 -1 0 0 0

5 0 0	 -1 0 0 1

6 0 -1 -1 0 -1 0

1 2 3 4 5 6

1 0 1 1 0 0 0

2 -1 0 0 0 1 1

3 -1 0 0 1 1 1

4 0 0 -1 0 1 0

5 0 -1	 -1 -1 0 0

6 0 -1 -1 0 0 0

1 2 3 4 5 6

1 0 1 1 0 0 0

2 -1 0 0 1 1 1

3 -1 0 0 0 1 1

4 0 -1 0 0 0 1

5 0 -1	 -1 0 0 0

6 0 -1 -1 -1 0 0

1-10-011-0010-01101 1-10-001-0111-01100 1-10-010-0110-01110

Figure 10: Examples of different encoding bit strings that de-
code to the same network computation block.

connections, the total number of parameters and the FLOPs over a
few sampled architecture building blocks. See Table 4 for examples
of these calculations.

REFERENCES
[1] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. 2017. Designing

Neural Network Architectures using Reinforcement Learning. In ICLR.
[2] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. 2018. Efficient

Architecture Search by Network Transformation. In AAAI.
[3] L.-C. Chen, M. D. Collins, Y. Zhu, G. Papandreou, B. Zoph, F. Schroff, H.

Adam, and J. Shlens. 2018. Searching for Efficient Multi-Scale Architectures
for Dense Image Prediction. arXiv preprint arXiv:1809.04184 (Sep 2018).
arXiv:cs.CV/1809.04184

[4] X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. Yuille. 2014. Detect
What You Can: Detecting and Representing Objects Using Holistic Models and
Body Parts. In 2014 IEEE Conference on Computer Vision and Pattern Recogni-
tion. 1979–1986. https://doi.org/10.1109/CVPR.2014.254

[5] Y. Chen, Q. Zhang, C. Huang, L. Mu, G. Meng, and X. Wang. 2018. Rein-
forced Evolutionary Neural Architecture Search. ArXiv e-prints (Aug 2018).
arXiv:1808.00193

[6] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830
(2016).

[7] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and Tanaka Meyarivan. 2000. A
fast elitist non-dominated sorting genetic algorithm for multi-objective optimiza-
tion: NSGA-II. In International Conference on Parallel Problem Solving From
Nature. Springer, 849–858.

[8] Terrance DeVries and Graham W Taylor. 2017. Improved regularization of
convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552
(2017).

[9] Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei, and Min Sun. 2018.
PPP-Net: Platform-aware Progressive Search for Pareto-optimal Neural Architec-
tures. In ICLR.

[10] T. Elsken, J. Hendrik Metzen, and F. Hutter. 2018. Efficient Multi-objective Neural
Architecture Search via Lamarckian Evolution. arXiv preprint arXiv:1804.09081
(April 2018). arXiv:stat.ML/1804.09081

[11] T. Elsken, J.H. Metzen, and F. Hutter. 2018. Simple and efficient architecture
search for Convolutional Neural Networks. In ICLR.

[12] M. Fleischer. 2003. The measure of Pareto optima: Applications to multi-objective
optimization. In EMO.

[13] David E. Goldberg and Kalyanmoy Deb. 1991. A Comparative Analysis of Selec-
tion Schemes Used in Genetic Algorithms. Foundations of Genetic Algorithms,
Vol. 1. Elsevier, 69 – 93. https://doi.org/10.1016/B978-0-08-050684-5.50008-2

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR.

[15] J. H. Holland. 1975. Adaptation in Natural and Artificial Systems. Ann Arbor,
MI: MIT Press.

[16] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[17] C.-H. Hsu, S.-H. Chang, D.-C. Juan, J.-Y. Pan, Y.-T. Chen, W. Wei, and S.-
C. Chang. 2018. MONAS: Multi-Objective Neural Architecture Search us-
ing Reinforcement Learning. arXiv preprint arXiv:1806.10332 (June 2018).
arXiv:1806.10332

9

http://arxiv.org/abs/cs.CV/1809.04184
https://doi.org/10.1109/CVPR.2014.254
http://arxiv.org/abs/1808.00193
http://arxiv.org/abs/stat.ML/1804.09081
https://doi.org/10.1016/B978-0-08-050684-5.50008-2
http://arxiv.org/abs/1806.10332


Figure 11: Set of networks architectures on the trade-off frontier discovered by NSGA-Net.
10



Table 4: Network examples comparing the number of active nodes, number of connections, number of parameters and number of
multiply-adds.

Phase # of # of Params. FLOPs
Architectures Nodes Conns (K) (M)

3 4 113 101

4 6 159 141

4 7 163 145

5 9 208 186

5 10 216 193

6 13 265 237

[18] C.-H. Hsu, S.-H. Chang, D.-C. Juan, J.-Y. Pan, Y.-T. Chen, W. Wei, and S.-C.
Chang. 2018. Neural Architecture Optimization. arXiv preprint arXiv:1808.07233
(Aug 2018). arXiv:1808.07233

[19] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q Weinberger. 2017.
Densely connected convolutional networks. In CVPR.

[20] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 (2015).

[21] Felix Juefei-Xu, Vishnu Naresh Boddeti, and Marios Savvides. 2017. Local binary
convolutional neural networks. In CVPR.

[22] K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. Xing. 2018.
Neural Architecture Search with Bayesian Optimisation and Optimal Transport.
arXiv preprints arXiv:1802.07191 (Feb 2018). arXiv:1802.07191

[23] Y.H. Kim, B. Reddy, S. Yun, and C. Seo. 2017. NEMO: Neuro-evolution with
multiobjective optimization of deep neural network for speed and accuracy. In
JMLR: Workshop and Conference Proceedings, Vol. 1. 1–8.

[24] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. [n. d.]. CIFAR-10 (Canadian
Institute for Advanced Research). ([n. d.]). http://www.cs.toronto.edu/~kriz/cifar.
html

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classi-
fication with Deep Convolutional Neural Networks. In NIPS.

[26] J. Liang, E. Meyerson, and R. Miikkulainen. 2018. Evolutionary Architec-
ture Search For Deep Multitask Networks. ArXiv e-prints (March 2018).
arXiv:1803.03745

[27] Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan L.
Yuille, Jonathan Huang, and Kevin Murphy. 2017. Progressive Neural Architecture
Search. CoRR abs/1712.00559 (2017). arXiv:1712.00559 http://arxiv.org/abs/
1712.00559

[28] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Ko-
ray Kavukcuoglu. 2018. Hierarchical Representations for Efficient Architecture
Search. In ICLR. https://openreview.net/forum?id=BJQRKzbA-

[29] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. DARTS: Differentiable
Architecture Search. arXiv preprint arXiv:1806.09055 (2018).

[30] I. Loshchilov and F. Hutter. 2016. SGDR: Stochastic Gradient Descent with Warm
Restarts. arXiv preprint arXiv:1608.03983 (August 2016). arXiv:1608.03983

[31] Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann
Bies, Mark Ferguson, Karen Katz, and Britta Schasberger. 1994. The Penn
Treebank: Annotating Predicate Argument Structure. In Proceedings of the Work-
shop on Human Language Technology (HLT ’94). Association for Computational

Linguistics, Stroudsburg, PA, USA, 114–119. https://doi.org/10.3115/1075812.
1075835

[32] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju,
H. Shahrzad, A. Navruzyan, N. Duffy, and B. Hodjat. 2017. Evolving Deep Neural
Networks. arXiv preprint arXiv:1703.00548 (March 2017). arXiv:1703.00548

[33] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. (2017).

[34] Gerulf KM Pedersen and Zhenyu Yang. 2006. Multi-objective PID-controller
tuning for a magnetic levitation system using NSGA-II. In GECCO. ACM, 1737–
1744.

[35] Martin Pelikan, David E Goldberg, and Erick Cantú-Paz. 1999. BOA: The
Bayesian optimization algorithm. In GECCO. Morgan Kaufmann Publishers Inc.,
525–532.

[36] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. 2018. Effi-
cient Neural Architecture Search via Parameters Sharing. In Proceedings of the
35th International Conference on Machine Learning (Proceedings of Machine
Learning Research), Jennifer Dy and Andreas Krause (Eds.), Vol. 80. PMLR,
Stockholmsmässan, Stockholm Sweden, 4095–4104. http://proceedings.mlr.
press/v80/pham18a.html

[37] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. 2018.
Efficient Neural Architecture Search via Parameter Sharing. CoRR abs/1802.03268
(2018). arXiv:1802.03268 http://arxiv.org/abs/1802.03268

[38] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
Xnor-net: Imagenet classification using binary convolutional neural networks. In
ECCV.

[39] E. Real, A. Aggarwal, Y. Huang, and Q. V Le. 2018. Regularized Evolution
for Image Classifier Architecture Search. arXiv preprint arXiv:1802.01548 (Feb
2018). arXiv:1802.01548

[40] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. Le, and A.
Kurakin. 2017. Large-Scale Evolution of Image Classifiers. arXiv preprint
arXiv:1703.01041 (March 2017). arXiv:1703.01041

[41] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-scale Image Recognition. In ICLR.

[42] Kenneth O. Stanley and Risto Miikkulainen. 2002. Evolving Neural Networks
Through Augmenting Topologies. Evol. Comput. 10, 2 (June 2002), 99–127.
https://doi.org/10.1162/106365602320169811

[43] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.

11

http://arxiv.org/abs/1808.07233
http://arxiv.org/abs/1802.07191
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://arxiv.org/abs/1803.03745
http://arxiv.org/abs/1712.00559
http://arxiv.org/abs/1712.00559
http://arxiv.org/abs/1712.00559
https://openreview.net/forum?id=BJQRKzbA-
http://arxiv.org/abs/1608.03983
https://doi.org/10.3115/1075812.1075835
https://doi.org/10.3115/1075812.1075835
http://arxiv.org/abs/1703.00548
http://proceedings.mlr.press/v80/pham18a.html
http://proceedings.mlr.press/v80/pham18a.html
http://arxiv.org/abs/1802.03268
http://arxiv.org/abs/1802.03268
http://arxiv.org/abs/1802.01548
http://arxiv.org/abs/1703.01041
https://doi.org/10.1162/106365602320169811


Table 5: Summary of relevant related work along with datasets each method has been applied to, objectives optimized, and the
computational power used (if reported). Methods not explicitly named are presented as the author names. PTB refers to the Penn
Treebank [31] dataset. The Dataset(s) column describes what datasets the method performed a search with, meaning other datasets
may have been presented in a study, but not used to perform architecture search. A dash represents some information not being
provided. We attempt to limit the focus here to published methods, though some unpublished methods may be listed for historical
contingency.

Method Name Dataset(s) Objective(s) Compute Used

R
L

Zoph and Lee [50] CIFAR-10, PTB Accuracy
800 Nvidia K80 GPUs

22,400 GPU Hours

NASNet [51] CIFAR-10 Accuracy
500 Nvidia P100 GPUs

2,000 GPU Hours

BlockQNN [49] CIFAR-10 Accuracy
32 Nvidia 1080Ti GPUS

3 Days

MetaQNN [1]
SVHN, MNIST

CIFAR-10 Accuracy
10 Nvidia GPUs

8-10 Days

MONAS [17] CIFAR-10 Accuracy & Power Nvidia 1080Ti GPUs

EAS [2] SVHN, CIFAR-10 Accuracy
5 Nvidia 1080Ti GPUs

2 Days

ENAS [37] CIFAR-10, PTB Accuracy
1 Nvidia 1080Ti GPUs

< 16 Hours

E
A

CoDeepNEAT [32] CIFAR-10, PTB Accuracy 1 Nvidia 980 GPU

Real et al. [40] CIFAR-10, CIFAR-100 Accuracy -

AmoebaNet [39] CIFAR-10 Accuracy
450 Nvidia K40 GPUs

~7 Days

GeNet [47] CIFAR-10 Accuracy
10 GPUs

17 GPU Days

NEMO [23]
MNIST, CIFAR-10
Drowsiness Dataset Accuracy & Latency 60 Nvidia Tesla M40 GPUs

Liu et al. [28] CIFAR-10 Accuracy 200 Nvidia P100 GPUs

LEMONADE [10] CIFAR-10 Accuracy
Titan X GPUs
56 GPU Days

PNAS [27] CIFAR-10 Accuracy -

PPP-Net [9] CIFAR-10
Accuracy &

Params/FLOPS/Time Nvidia Titan X Pascal

O
th

er

NASBOT [22]
CIFAR-10

Various Accuracy 2-4 Nvidia 980 GPUs

DPC [3] Cityscapes [4] Accuracy
370 GPUs

1 Week

NAO [18] CIFAR-10 Accuracy
200 Nvidia V100 GPUs

1 Day

DARTS [29] CIFAR-10 Accuracy
1 Nvidia 1080Ti GPUs

1.5 - 4 Day
12



Going Deeper with Convolutions. In CVPR.
[44] Ma Guadalupe Castillo Tapia and Carlos A Coello Coello. 2007. Applications of

multi-objective evolutionary algorithms in economics and finance: A survey. In
CEC. IEEE, 532–539.

[45] Christopher John Cornish Hellaby Watkins. 1989. Learning from Delayed Rewards.
Ph.D. Dissertation. King’s College, Cambridge, UK. http://www.cs.rhul.ac.uk/
~chrisw/new_thesis.pdf

[46] Tao Wei, Changhu Wang, Yong Rui, and Chang Wen Chen. 2016. Network
Morphism. In ICML.

[47] L. Xie and A. Yuille. 2017. Genetic CNN. In ICCV.
[48] Sergey Zagoruyko and Nikos Komodakis. 2016. Wide Residual Networks. In

BMVC.

[49] Zhao Zhong, Junjie Yan, and Cheng-Lin Liu. 2017. Practical Network Blocks
Design with Q-Learning. CoRR abs/1708.05552 (2017). arXiv:1708.05552
http://arxiv.org/abs/1708.05552

[50] B. Zoph and Q. V. Le. 2016. Neural Architecture Search with Reinforcement
Learning. arXiv preprint arXiv:1611.01578 (Nov 2016). arXiv:cs.LG/1611.01578

[51] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning
transferable architectures for scalable image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 8697–8710.

13

http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://arxiv.org/abs/1708.05552
http://arxiv.org/abs/1708.05552
http://arxiv.org/abs/cs.LG/1611.01578

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 Encoding
	3.2 Search Procedure

	4 Experiments
	4.1 Performance Metrics
	4.2 Implementation Details
	4.3 Architecture Validation
	4.4 Results Analysis
	4.5 Transferability
	4.6 Ablation Studies
	4.7 Discussion

	5 Conclusions
	6 Appendix
	6.1 Duplicate Checking and Removal
	6.2 Architecture Complexity Estimation

	References

