Mitigating Information Leakage in Image Representations: A Maximum Entropy Approach (supplementary Material)

Proteek Chandan Roy and Vishnu Naresh Boddeti Department of Computer Science and Engineering Michigan State University, East Lansing MI 48824 {royprote, vishnu}@msu.edu

In this supplementary material we include proof of Theorem 1 in Section 1, Corollary 1.1 in Section 2 and finally provide the numerical values of the trade-off fronts in the CIFAR-10 and CIFAR-100 experiment in Section 3.

1. Proof of Theorem 1

Theorem 1. Given a fixed encoder E, the optimal discriminator is $q_D(s|E(\boldsymbol{x};\boldsymbol{\theta}_E);\boldsymbol{\theta}_D^*) = p(s|E(\boldsymbol{x};\boldsymbol{\theta}_E))$ and the optimal predictor is $q_T(t|E(\boldsymbol{x};\boldsymbol{\theta}_E);\boldsymbol{\theta}_T^*) = p(t|E(\boldsymbol{x};\boldsymbol{\theta}_E))$.

Proof. Let, z be the fixed encoder output from input x i.e. $z = E(x; \theta_E)$. Let, p(x, t, s) be the true joint distribution of the variables, i.e. input x, target label t and sensitive label s. The fixed encoder is a deterministic transformation of x and generates an implicit distribution p(z, t, s).

Discriminator: The objective of the discriminator is,

$$V_{1}(\boldsymbol{\theta}_{E}, \boldsymbol{\theta}_{D}) = KL\left(p\left(s|\boldsymbol{x}\right) \| q_{D}\left(s|E(\boldsymbol{x}; \boldsymbol{\theta}_{E}); \boldsymbol{\theta}_{D}\right)\right)$$

$$= \underbrace{\mathbb{E}}_{(\boldsymbol{z}, t, s) \sim p(\boldsymbol{z}, t, s)} - \log q_{D}(s|\boldsymbol{z}; \boldsymbol{\theta}_{D})$$

$$= -\sum_{\boldsymbol{x}, t, s} p(\boldsymbol{x}, t, s) \log q_{D}(s|\boldsymbol{z}; \boldsymbol{\theta}_{D})$$
s.t.
$$\sum_{s} q_{D}(s|\boldsymbol{z}; \boldsymbol{\theta}_{D}) = 1, \quad \forall \boldsymbol{z}$$

$$q_{D}(s|\boldsymbol{z}; \boldsymbol{\theta}_{D}) \geq 0, \quad \forall \boldsymbol{z}$$

$$(1)$$

The Lagrangian dual of the problem can be written as

$$L = V_1(\boldsymbol{\theta}_E, \boldsymbol{\theta}_D) + \sum_{\boldsymbol{z}} \lambda(\boldsymbol{z}) \left(\sum_{s} q_D(s | \boldsymbol{z}; \boldsymbol{\theta}_D) - 1 \right)$$

Now we take partial derivative of L w.r.t. $q_D(s|\boldsymbol{z};\boldsymbol{\theta}_D^*)$, the distribution of optimal discriminator. Therefore, the opti-

mal discriminator satisfies,

$$\frac{\partial L}{\partial q_D(s|\boldsymbol{z};\boldsymbol{\theta}_D^*)} = 0$$

$$\Rightarrow -\frac{\sum_t p(\boldsymbol{z},t,s)}{q_D(s|\boldsymbol{z};\boldsymbol{\theta}_D^*)} + \lambda(\boldsymbol{z}) = 0$$

$$\Rightarrow \lambda(\boldsymbol{z})q_D(s|\boldsymbol{z};\boldsymbol{\theta}_D^*) = p(\boldsymbol{z},s)$$
(2)

where we used the fact that, $\sum_t p(\boldsymbol{z}, t, s) = p(\boldsymbol{z}, s)$. Now summing w.r.t. to variable s on the both sides of last line and using the fact that $\sum_s q_D(s|\boldsymbol{z}; \boldsymbol{\theta}_D^*) = 1$ we get,

$$\lambda(\boldsymbol{z}) = p(\boldsymbol{z})$$

By substituting $\lambda(z)$ we obtain the solution for the optimal discriminator,

$$q_D(s|\boldsymbol{z};\boldsymbol{\theta}_D^*) = \frac{p(\boldsymbol{z},s)}{p(\boldsymbol{z})} = p(s|\boldsymbol{z})$$
(3)

Therefore,

$$q_D(s|E(\boldsymbol{x};\boldsymbol{\theta}_E);\boldsymbol{\theta}_D^*) = p(s|E(\boldsymbol{x};\boldsymbol{\theta}_E))$$

Target Predictor: The objective of the predictor is,

$$V_{2}(\boldsymbol{\theta}_{E}, \boldsymbol{\theta}_{T}) = KL\left(p\left(t|\boldsymbol{x}\right) \| q_{T}\left(t|E(\boldsymbol{x}; \boldsymbol{\theta}_{E}); \boldsymbol{\theta}_{T}\right)\right)$$

$$= \underbrace{\mathbb{E}}_{(\boldsymbol{z}, t, s) \sim p(\boldsymbol{z}, t, s)} - \log q_{T}(t|\boldsymbol{z}; \boldsymbol{\theta}_{T})$$

$$= -\sum_{\boldsymbol{x}, t, s} p(\boldsymbol{x}, t, s) \log q_{T}(t|\boldsymbol{z}; \boldsymbol{\theta}_{T})$$
s.t.
$$\sum_{t} q_{T}(t|\boldsymbol{z}; \boldsymbol{\theta}_{T}) = 1, \quad \forall \boldsymbol{z}$$

$$q_{T}(t|\boldsymbol{z}; \boldsymbol{\theta}_{T}) \geq 0, \quad \forall \boldsymbol{z}$$
(4)

The Lagrangian dual of the problem can be written as

$$L = V_2(\boldsymbol{\theta}_E, \boldsymbol{\theta}_T) + \sum_{\boldsymbol{z}} \lambda(\boldsymbol{z}) \left(\sum_{t} q_T(t | \boldsymbol{z}; \boldsymbol{\theta}_T) - 1 \right)$$

Now we take partial derivative of L w.r.t. $q_T(t|\boldsymbol{z};\boldsymbol{\theta}_T^*)$, the distribution of optimal predictor. The optimal predictor satisfies the equation.

$$\frac{\partial L}{\partial q_T(t|\boldsymbol{z};\boldsymbol{\theta}_T^*)} = 0$$

$$\Rightarrow -\frac{\sum_s p(\boldsymbol{z}, t, s)}{q_T(t|\boldsymbol{z};\boldsymbol{\theta}_T^*)} + \lambda(\boldsymbol{z}) = 0$$

$$\Rightarrow \lambda(\boldsymbol{z})q_T(t|\boldsymbol{z};\boldsymbol{\theta}_T^*) = p(\boldsymbol{z}, t)$$
(5)

where we used the fact that, $\sum_{s} p(z, t, s) = p(z, t)$. Now summing w.r.t. to variable t on the both sides of last line and using the fact that $\sum_{t} q_T(t|z; \theta_T^*) = 1$ we get,

$$\lambda(\boldsymbol{z}) = p(\boldsymbol{z})$$

By substituting $\lambda(z)$ we obtain the solution of the optimal discriminator

$$q_T(t|\boldsymbol{z};\boldsymbol{\theta}_T^*) = \frac{p(\boldsymbol{z},t)}{p(\boldsymbol{z})} = p(t|\boldsymbol{z})$$
(6)

Therefore,

$$q_T(t|E(\boldsymbol{x};\boldsymbol{\theta}_E);\boldsymbol{\theta}_T^*) = p(t|E(\boldsymbol{x};\boldsymbol{\theta}_E))$$

2. Proof of Corollary 1.1

Corollary 1.1. When $s \perp t$, let the optimum discriminator and predictor for an encoder E be $q_D(s|E(\boldsymbol{x};\boldsymbol{\theta}_E);\boldsymbol{\theta}_D^*)$ and $q_T(t|E(\boldsymbol{x};\boldsymbol{\theta}_E);\boldsymbol{\theta}_T^*)$ respectively. The optimal encoder $E(\cdot)$ in the MaxEnt-ARL formulation induces a uniform distribution in the discriminator $q_D(s|E(\boldsymbol{x};\boldsymbol{\theta}_E);\boldsymbol{\theta}_D^*)$ over the classes of the sensitive attribute.

Proof. Here we will prove that, when discriminator is fixed, then the encoder learns a representation of data \boldsymbol{x} such that $q_D(s|E(\boldsymbol{x};\boldsymbol{\theta}_E^*);\boldsymbol{\theta}_D^*) = 1/m$. First we note that although the discriminator is fixed, the discriminator probability $q_D(s|E(\boldsymbol{x};\boldsymbol{\theta}_E);\boldsymbol{\theta}_D^*)$ can change by changing the encoder parameters $\boldsymbol{\theta}_E$. Optimization of the encoder in MaxEnt-ARL is formulated as:

$$\min V = \min_{\boldsymbol{\theta}_E} \mathbb{E}_{(\boldsymbol{x},t,s) \sim p(\boldsymbol{x},t,s)} \left[-\log q_T(t|E(\boldsymbol{x};\boldsymbol{\theta}_E);\boldsymbol{\theta}_T^*) \right]$$

$$+ \alpha \mathbb{E}_{\boldsymbol{x}} \left[\sum_{i=1}^m q_D(s_i|E(\boldsymbol{x};\boldsymbol{\theta}_E);\boldsymbol{\theta}_D^*) \log q_D(s_i|E(\boldsymbol{x};\boldsymbol{\theta}_E);\boldsymbol{\theta}_D^*) \right]$$

$$+ \log m$$
s.t.
$$\sum_{i=1}^m q_D(s_i|E(\boldsymbol{x};\boldsymbol{\theta}_E);\boldsymbol{\theta}_D^*) = 1$$

 $q_D(s_i|E(\boldsymbol{x};\boldsymbol{\theta}_E);\boldsymbol{\theta}_D^*) \geq 0, \ \forall i$

The Lagrangian dual of the problem can be written as,

$$L = V - \lambda \left(\sum_{i=1}^{m} q_D(s_i | E(\boldsymbol{x}; \boldsymbol{\theta}_E); \boldsymbol{\theta}_D^*) - 1 \right)$$

Here λ is a Lagrangian multiplier and is assumed to be a constant in the absence of any further information. Since $s \perp t$, we have $q_T(t|E(\boldsymbol{x};\boldsymbol{\theta}_E);\boldsymbol{\theta}_T^*)$ is independent of $q_D(s|E(\boldsymbol{x};\boldsymbol{\theta}_E);\boldsymbol{\theta}_D^*)$ given $E(\boldsymbol{x};\boldsymbol{\theta}_E)$ from Theorem 1. Therefore, if we take derivative of L w.r.t. $q_D(s_i|E(\boldsymbol{x};\boldsymbol{\theta}_E);\boldsymbol{\theta}_D^*)$ and set it to zero we have:

$$\frac{\partial L}{\partial q_D(s_i | E(\boldsymbol{x}; \boldsymbol{\theta}_E); \boldsymbol{\theta}_D^*)} = 0$$

$$\Rightarrow 1 + \log \left(q_D(s_i | E(\boldsymbol{x}; \boldsymbol{\theta}_E); \boldsymbol{\theta}_D^*) - \lambda = 0 \right)$$

$$\Rightarrow q_D(s_i | E(\boldsymbol{x}; \boldsymbol{\theta}_E); \boldsymbol{\theta}_D^*) = \exp \left(\lambda - 1\right)$$
(8)

Using the first (non-trivial) constraint, we have

$$\sum_{i=1}^{m} q_D(s_i | E(\boldsymbol{x}; \boldsymbol{\theta}_E); \boldsymbol{\theta}_D^*) = 1$$
$$\sum_{i=1}^{m} \exp(\lambda - 1) = 1$$
$$\exp(\lambda - 1) \sum_{i=1}^{m} 1 = 1$$
$$m(\exp(\lambda - 1)) = 1$$
$$\lambda = \log(1/m) + 1$$

Hence, the probability distribution of the discriminator after the encoder's parameters θ_E are optimized is $q_D(s_i|E(\boldsymbol{x}; \boldsymbol{\theta}_E^*); \boldsymbol{\theta}_D^*) = 1/m$. Thus, when the optimum discriminator parameters are fixed, the encoder optimizes the representation such that the discriminator does not leak any information, i.e., it induces a uniform distribution. \Box

3. CIFAR Trade-Off

We report the numerical values of the target accuracy and adversary accuracy trade-off results on the CIFAR-10 and CIFAR-100 experiments in Table 1 and Table 3, respectively. Similarly, we report the numerical values of the target accuracy and adversary entropy trade-off results on the CIFAR-10 and CIFAR-100 experiments in Table 2 and Table 4, respectively.

Target	Accuracy (%)	97.75	97.73	97.68	-	Target A	97.52	97.44	97.35	91.52	91.15	60.00		
Adversar	ry Accuracy (%)	23.44	23.09	22.68		Adversary	Accuracy	(%)	20.83	20.77	20.64	19.68	14.27	10.00
(a) No Privacy									(b) N	ML-ARI				
	Target Accuracy (%)		97.78	97.74	97.53	96.79	95	.01 9	92.34	61.17	_			
	Adversary A	ccurac	y (%)	23.44	22.91	21.17	21.14	19	.05 1	2.00	10.64			

(c) MaxEnt-ARL

fuble f. chiffer for funger freedulaey (70) is flaversury freedulae	Table 1: CIFAR-10:	Target Accurac	y (%) vs	Adversary	Accurac
---	--------------------	----------------	----------	-----------	---------

Target Accuracy (%) 97.75		97.73	97.71		Targe	t Accuracy	(%)	97.52	97.50	96.58	95.97	60.00
Adversary Entropy (nats)	1.65	1.65	1.67		Adversary Entropy (nats)			1.65	1.66	1.80	2.16	2.30
(a) No P						(b) ML-	ARL					
Target Accuracy (%)		97.78	97.74	97.58	97.53	97.14	96.79	95.	76 9	2.34	61.17	
Adversary Entropy (n	nats)	1.65	1.66	1.78	2.11	2.26	2.26	2.2	27 2	2.27	2.29	

(c) MaxEnt-ARL

Table 2: CIFAR-10: Target Accuracy (%	%) vs Adversary Entro	py
---------------------------------------	-----------------------	----

Target Accuracy (%) 7	71.99	71.56	-	Target Accuracy (%)			2 70.52	70.43	69.98	69.42	24.66	22.22	5.00
Adversary Accuracy (%) 3	30.69	30.59	-	Adversary Accuracy (%)		%) 15.43	15.09	14.84	14.60	14.41	6.81	6.72	1.00
(a) No Privacy	y						(b) N	IL-ARL					
Target Accuracy (%)		71.17	70.80	70.50	67.63	63.81	61.98	60.03	59.	11 5	.37	5.00	
Adversary Accuracy (%	6)	16.88	16.60	16.43	13.23	8.38	5.02	3.80	2.8	1 1	.23	1.00	

(c) MaxEnt-ARL

Table 3: CIFAR-100: Target Accuracy (%) vs Adversary Accuracy

Target Accuracy (%)	71.99		Target	Accuracy ((%)	71.32	64.90	56.99	54.46	24.66	22.22	5.00	_	
Adversary Entropy (nats)	2.09		Adversar	y Entropy	(nats)	2.50	2.51	2.68	2.88	3.77	3.88	4.60	_	
(a) No Privacy							(b) ML	-ARL						
Target Accuracy (%)	71.1	7 71.05	70.80	67.63	67.3	8 65	5.71	63.81	61.98	59.1	1 56	5.32	5.37	5.00
Adversary Entropy (nats)	2.2	7 2.28	2.31	2.91	3.01	l 3	.24	4.14	4.56	4.5	74	.57	4.59	4.60

(c) MaxEnt-ARL

Table 4: CIFAR-100: Target Accuracy vs Adversary Entropy