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Abstract

Convolutional neural networks are witnessing wide adop-

tion in computer vision systems with numerous applications

across a range of visual recognition tasks. Much of this

progress is fueled through advances in convolutional neu-

ral network architectures and learning algorithms even as

the basic premise of a convolutional layer has remained un-

changed. In this paper, we seek to revisit the convolutional

layer that has been the workhorse of state-of-the-art visual

recognition models. We introduce a very simple, yet effective,

module called a perturbation layer as an alternative to a

convolutional layer. The perturbation layer does away with

convolution in the traditional sense and instead computes its

response as a weighted linear combination of non-linearly

activated additive noise perturbed inputs. We demonstrate

both analytically and empirically that this perturbation layer

can be an effective replacement for a standard convolutional

layer. Empirically, deep neural networks with perturba-

tion layers, called Perturbative Neural Networks (PNNs),

in lieu of convolutional layers perform comparably with stan-

dard CNNs on a range of visual datasets (MNIST, CIFAR-10,

PASCAL VOC, and ImageNet) with fewer parameters.

1. Introduction

Deep convolutional neural networks (CNNs) have been

overwhelmingly successful across a variety of visual percep-

tion tasks. The past several years have witnessed the evolu-

tion of many successful CNN architectures such as AlexNet

[14], VGG [27], GoogLeNet [30], ResNet [8, 9], MobileNet

[10], and DenseNet [11], etc. Much of this effort has been

focused on the topology and connectivity between convolu-

tional and other modules while the convolutional layer itself

has continued to remain the backbone of these networks.

Convolutional layers are characterized by two main proper-

ties [17, 5], namely, local connectivity and weight sharing,

both of which afford these layers with significant computa-

tional and statistical efficiency over densely connected layers.

Ever since the introduction of AlexNet [14], there has been

steady refinements to a standard convolutional layer. While

AlexNet utilized convolutional filters with large receptive

fields (11× 11, 5× 5 etc.), the VGG network [27] demon-

strated the utility of using convolutional weights with very

small receptive fields (3× 3) that are both statistically and

computationally efficient for learning deep convolutional

neural networks. As convolutional layers are often the main

computational bottleneck of CNNs, there has been steady

developments in improving the computational efficiency of

convolutional layers. MobileNets [10] introduced efficient

reparameterization of standard 3× 3 convolutional weights,

in terms of depth-wise convolutions and 1× 1 convolutions.

Convolutional networks with binary weights [2, 3, 23] have

been proposed to significantly improve the computational

efficiency of CNNs. Recent work has also demonstrated

that sparse convolutional weights [20, 21, 18] perform com-

parably to dense convolutional weights while also being

computationally efficient. However, across this entire body

of work the basic premise of a convolutional layer itself has

largely remained unchanged.

This paper seeks to rethink the basic premise of the neces-

sity of convolutional layers for the task of image classifica-

tion. The success of a wide range of approaches that utilize

convolutional layers that have, a) very small receptive fields

(3 × 3), b) sparse convolutional weights, and c) convolu-

tional weights with binary weights, motivates our hypothesis

that one can perhaps completely do away with convolutional

layers for learning high performance image classification

models. We propose a novel module, dubbed the perturba-

tion layer1, that conforms to our hypothesis and is devoid

of standard convolutional operations. Given an input, the

perturbation layer first perturbs the input additively through

random, but fixed, noise followed by a weighted combina-

tion of non-linear activations of the input perturbations. The

weighted linear combinations of activated perturbations are

conceptually similar to 1×1 convolutions, but are not strictly

convolutional since their receptive field is just one pixel, as

opposed to the receptive fields of standard convolutional

weights. This layer is thus an extreme version of sparse

convolutional weights with sparsity of one non-zero element

1 Implementation and future updates will be available at http://

xujuefei.com/pnn.
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and fixed non-zero support at the center of the filter. Avoid-

ing convolutions with receptive fields larger than one offers

immediate statistical savings in the form of fewer learnable

network parameters, computational savings from more effi-

cient operations (weighted sum vs. convolution) and more

importantly allows us to rethink the premise and utility of

convolutional layers in the context of image classification

models. Our theoretical analysis shows that the perturbation

layer can approximate the response of a standard convolu-

tional layer. In addition, we empirically demonstrate that

deep neural networks with the perturbation layers as replace-

ments for standard convolutional layers perform as well as

an equivalent network with convolutional layers across a

variety of datasets of varying difficulty and scale, MNIST,

CIFAR-10, PASCAL VOC, and ImageNet.

2. Related Work

There is a huge body of work on the design and applica-

tions of CNNs for image classification, the full treatment of

which is beyond the scope of this paper. We will however

note a few major advances that were motivated by improving

the performance of these networks, such as, AlexNet [14],

VGG [27], GoogLeNet [30], Residual Networks [8], etc.

The idea of using convolutional weights with small recep-

tive fields is not new. While the VGG [27] network was the

first model to demonstrate the efficacy of small convolutional

weights in deep CNNs, other researchers have explored the

use of small convolutional weights, including 1× 1 convolu-

tional weights. For instance the GoogLeNet [30] architecture

comprises of weights with different receptive fields includ-

ing 1 × 1 weights. The Network in Network architecture

[19] also utilizes 1× 1 convolutions. However, all of these

approaches have used 1×1 convolutions in conjunction with

convolutional filters with larger receptive fields. In contrast

the perturbative layer that we introduce in this paper is de-

void of any convolutional layers with receptive fields larger

than one pixel and combines information from multiple noise

perturbed versions of the input.

Efficient characterization of convolutional layers have

also been proposed from the perspective of computational ef-

ficiency. Networks with binary weights [3, 2, 23], networks

with sparse convolutional weights [20, 21, 18], networks

with efficient factorization of the convolutional weights

[10, 15] and networks with a hybrid of learnable and fixed

weights [12]. While the proposed perturbation layer does

offer computational benefits in terms of fewer parameters

and more efficient inference our aim in this paper is to moti-

vate the need to rethink the premise and utility of a standard

convolutional layer for image classification tasks. The pro-

posed perturbation layer serves as evidence that perhaps

convolutional layers are not very critical to learning image

classification models that can perform as well as, if not better

than, standard convolutional networks.

3. Proposed Method

In this section, we first detail the motivation and formu-

lation of the proposed perturbative neural networks (PNN),

and then discuss its relation to standard CNNs from both

a macro as well as a micro viewpoint. Finally, we discuss

some properties associated with PNN.

3.1. Revisiting LBCNN and an Observation

Recently, local binary convolutional neural networks

(LBCNN) (as in [12]) have been motivated from the local

binary patterns (LBP) descriptor. The basic LBCNN module

is shown in the middle row of Figure 1, where the input

image (or tensor at subsequent layers) is first convolved with

a set of fixed, randomly generated sparse binary filters, and

the resulting response map is propagated through a nonlin-

ear activation, such as ReLU, and then, the ReLU activated

response map is linearly combined to generate an output

feature map that feeds into the next layer. These linear com-

bination weights are the only learnable parameters.

Specifically, let us assume that the input image (or tensor)

xl is filtered by m pre-defined fixed binary filters bi, i ∈
[m], to generate m difference maps that are then activated

through ReLU, resulting in m response maps. The linear

combination weights for the m response maps are Wl,i, i ∈
[m] for obtaining one final feature map. The combined set

of feature maps serve as the input xl+1 for the next layer.

Then the transfer function between input and output of

layer l can be expressed as:

xt
l+1 =

m∑

i=1

σrelu

(
∑

s

bs
l,i ∗ x

s
l

)

· Wt
l,i (1)

where t is the output channel, s is the input channel, and

∗ is the channel-wise convolution operation. Again, linear

weights W are the only learnable parameters of an LBCNN

layer. In this way, LBCNN can yield much lower model com-

plexity with significant savings in the number of learnable

parameters.

LBCNN’s idea of formulating a deep learning model

with a hybrid of fixed convolutional weights and learnable

linear combination weights in each layer is intriguing. In

Figure 2, we can see that a 3× 3 patch from the kitten image

is extracted, and the pixels are labeled as x1, . . . , x9. This

patch, in LBCNN, will first be convolved with a binary filter,

which is shown on the far right as an example. Since the filter

itself is binary with +1 and −1, the resulting scalar on the

response map will simply be the additions and subtractions

among the 9 neighboring pixels. In this case, it reduces to

y = x1 + x3 + x5 + x7 + x9 − x2 − x4 − x6 − x8. The

same process repeats for the next 3× 3 patch until the entire

response map is generated.

Mathematically, this convolution operation is transform-

ing the patch center pixel xc = x5 to one particular point y
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Figure 1: Basic modules in CNN, LBCNN [12], and PNN. Wl and Vl are the learnable weights for local binary convolution layer and the proposed

perturbation layer respectively. Inspired by the formulation of LBCNN, the proposed PNN method also uses a set of linear weights to combine various

perturbation maps. For CNN: (a) input, (b) learnable convolutional filter, (c) response map, (d) ReLU, (g) feature map. For LBCNN: (a) input, (b) fixed

non-learnable binary filters, (c) difference maps by convolving with binary filters, (d) ReLU, (e) activated difference maps, (f) learnable linear weights for

combining the activated difference maps, (g) feature map. For PNN: (a) input, (b) fixed non-learnable perturbation masks, (c) response maps by addition with

perturbation masks, (d) ReLU, (e) activated response maps, (f) learnable linear weights for combining the activated response maps, (g) feature map.

x1 x2 x3

x4 x5 x6

x7 x8 x9

+1 -1 +1

-1 +1 -1

+1 -1 +1

Figure 2: Convolving with a binary filter is equivalent to addition and

subtraction among neighbors within the patch. Similarly, convolving with a

real-valued filter is equivalent to the linear combination of the neighbors

using filter weights.

on the response map: y = f(xc), and in this case, the func-

tion f is defined as above by including 8 neighboring pixels

of xc as well as the binary filter itself. which determines the

pixels that are added or subtracted. The same notion can

be easily extended towards standard convolution operations

with real-valued convolutional filters, either learnable or non-

learnable, and then the additions and subtractions among the

neighboring pixels become a linear weighted combinations.

This seemingly simple inner product operation f , whether

it has been efficiently implemented in the frequency do-

main or spatial domain, is a major computational bottle-

neck of deep CNN models. The key takeaway concept from

LBCNN is that the convolutional weights could be made

non-learnable and the learning can be carried out solely

through the linear combination weights, suggesting that there

may be more potential simplifications to the spatial convolu-

tion layer, since the primary network optimization happens

through the linear combination weights. This begs the ques-

tion, can we build upon LBCNN and arrive at a much simpler

function f̂?

3.2. Perturbative Neural Networks Module

The aforementioned observation motivates the formula-

tion of the PNN. The pictorial illustration of the proposed

PNN module is shown in the bottom row of Figure 1. When

the input image comes in, it will be perturbed with a set of

pre-defined random additive noise masks, each with the same

size as the input image, resulting in a set of noise-perturbed

maps. These maps will go through a ReLU non-linearity and

are then linearly combined to form one final feature map.

Again, the random additive noise masks are pre-defined and



non-learnable, and the only learnable parameters are the lin-

ear combination weights. Mathematically, PNN transforms

the input and output of layer l in the following way:

xt
l+1 =

m∑

i=1

σrelu

(
N i

l + xi
l

)
· Vt

l;i (2)

where t is the output channel index, i is the input channel

index, and N i
l is the i-th random additive perturbation mask

in layer l. Similar to LBCNN, the linear weights V are

the only learnable parameters of a perturbation layer. Not

surprisingly, PNN is able to save lots of learnable parameters

as will be discussed in the following sections.

From Eq. 2 we observe that the computationally expen-

sive convolution operation is replaced by an element-wise

noise addition which is significantly more efficient. Recall in

the previous section we ask the question whether it is possi-

ble to arrive at a much simpler function f̂ that transforms the

patch center xc to one point y on the feature map. Now we

can have y = f(xc) = xc + nc, where nc is the added noise

corresponding to xc location. An attractive attribute of the

PNN formulation is that repetitive operation such as the con-

volution (moving from one patch to the other) is no longer

needed. A single pass for adding the noise perturbation mask

to the entire input channel completes the task.

3.3. Relating PNN and CNN: A Macro View

Let x ∈ R
d be a vectorized input image of dimension d

and let y ∈ R
d be a vectorized feature map after convolving

x with a 2D convolutional filter w ∈ R
k×k. We use the

notation vec(·) to represent the vectorization of a matrix

and mat(·) to represent the opposite, which is reshaping the

vector to its original matrix form. The following discussion

will be done by using 2D matrices but the same technique

applies for high-dimensional tensors as practiced in CNN

layers as well. Therefore, the standard CNN convolution

operation is as follows, assuming no bias in the convolution:

CNN : y = vec(mat(x) ∗w) =

k2

∑

i

xi;shift · wi (3)

where xi;shift is the i-th spatially shifted version of the in-

put in vectorized form, and wi is the i-th element in the

convolution filter w.

For PNN, the same input x will be perturbed with N
random noise masks ni, and then linearly combined using

weight vector v whose elements are vi’s to form the out-

put response vector ŷ. Therefore, for PNN, the operation

follows:

PNN : ŷ =
N∑

i=1

(x+ ni) · vi (4)

If we arrange x + ni as the columns vectors of a matrix

X̂ ∈ R
d×N , we can rewrite the PNN operation as:

ŷ = X̂v = (X+N)v = (x1> +N)v (5)

where X ∈ R
d×N has vector x repeated in its columns and

N ∈ R
d×N is a perturbation matrix with noise vector ni in

its columns.

Given the CNN output vector y, we can always find the

vector v for PNN such that the PNN output ŷ is equal to or

approximately equal to y. If N = d, X̂ is a full rank square

matrix so an exact solution for v can be found as:

v∗ = X̂−1y = (x1> +N)−1y (6)

=

[

N−1 −
N−1x1>N−1

1 + 1>N−1x

]

y (7)

where the last step is due to Sherman–Morrison formula

[25, 26, 22]. If N < d, X̂ is a tall matrix, so a least square

solution can be found for v as:

v∗ = (X̂>X̂)−1X̂>y (8)

Next, we will derive a relationship between the convo-

lutional weights in CNN and the perturbation weights in

PNN assuming ŷ = y. Recall that convolution is a linear

operation that transforms input x to output y and can be

viewed as multiplication of a matrix. So we can rewrite the

convolution operation simply as:

y = Ax (9)

where A is a doubly block circulant matrix which corre-

sponds to convolutional weights w with proper manipulation.

Using the derived optimal linear weights vector v∗, the PNN

reconstruction simplifies to:

ŷr = (x1> +N)v∗ (10)

= (x1> +N)

[

N−1 −
N−1x1>N−1

1 + 1>N−1x

]

y (11)

= Ax = y (12)

Therefore, we can establish the following relationship:

⇒ (x1> +N)

[

N−1y −
N−1x1>N−1y

1 + 1>N−1x

]

= Ax (13)

⇒ x1>N−1

︸ ︷︷ ︸

n
>

(Ax)1>N−1

︸ ︷︷ ︸

n
>

x = x1>N−1

︸ ︷︷ ︸

n
>

x1>N−1

︸ ︷︷ ︸

n
>

(Ax)

⇒ xn>(Axn>)x = xn>(xn>A)x (14)

By observation, the following must hold:

Axn> = xn>A (15)

⇒ AXN−1 = XN−1A (16)

⇒ (X+AX)N−1 = N−1A (17)



where X+ is the Moore–Penrose inverse of X. Rearrang-

ing the terms, we can arrive at the Sylvester equation [29]

commonly used in control theory:

(X+AX)
︸ ︷︷ ︸

Sa

N−1 +N−1 (−A)
︸ ︷︷ ︸

Sb

= 0
︸︷︷︸

Sc

(18)

Reformulating in terms of Kronecker tensor product we

have:

[

I⊗ Sa + S>
b ⊗ I

]

N−1(:) = Sc(:) (19)

in that N−1 will have a unique solution when the eigenvalues

of Sa and −Sb are distinct, meaning the spectra of (X+AX)
and A are disjoint. In this way, given the known input x

and convolution transformation matrix A, we can always

solve for the matching noise perturbation matrix N using

linear algebra toolbox such as the Matlab Sylvester equation

routine.

3.4. Relating PNN and CNN: A Micro View

Now let us consider a single neighborhood (patch) in

the input tensor where the convolution is taking place, and

obtain a relation between PNN and CNN with some mild

assumptions. Let us assume that each pixel xi within this

patch is a random variable and we call the central pixel

xc for simplicity which has a total of card(Nc) neighbors

where Nc is a set containing the indices of the neighboring

pixels of xc. Let us further make assumptions on the first

and second order statistics of xi. In this case, we assume

that E(xi) = 0 and E(x2
i ) = σ2. Let εi = xi − xc, i ∈ Nc

be the difference between neighbor xi and the central pixel

xc. Next we want to examine the following three quantities,

namely E(εi), E(ε2i ), and E(εiεj), which will be used for

the subsequent derivation.

First, it is quite easy to see that: E(εi) = E(xi−xc) = 0.

Next, for the second order statistics E(ε2i ), we have:

E(ε2i ) = E[(xi − xc)
2] = E(x2

i + x2
c − 2xixc)

= E(x2
i ) + E(x2

c)− 2E(xixc)

= 2σ2 − 2ρσ2 = 2σ2δ (20)

where δ = 1−ρ. In this case, we assume that ρ ≈ 1 because

neighboring pixels usually have high correlations. Therefore,

δ is usually very small meaning that E(ε2i ) is very small as

well. Lastly, for E(εiεj), i 6= j we have:

E(εiεj) = E[(xi − xc)(xj − xc)]

= E(x2
c)− E(xixc)− E(xjxc) + E(xixi)

= σ2 − ρσ2 − ρσ2 + ρ̂σ2 (assuming ρ̂ ≈ ρ)

= σ2 − ρσ2 = σ2δ = (1/2)E(ε2i ) (21)

For CNN, the convolution operation maps the central pixel

xc to one point y on the output feature map with convolu-

tional weights wi’s as follows. Let N = card(Nc) + 1:

y =

N∑

i=1

xiwi = xc +
∑

i∈Nc

xiwi (22)

⇒ xcwc +
∑

i∈Nc

(xc + εi)wi = y (23)

⇒ xc

(

wc +
∑

i∈Nc

wi

)

+
∑

i∈Nc

εiwi = y (24)

⇒ xc +
∑

i∈Nc

εi

(

wi
∑N

i wi

)

=
y

∑N

i wi

(25)

⇒ xc +
∑

i∈Nc

εiw
′
i

︸ ︷︷ ︸

nc

= y′ (26)

Establishing that nc =
∑

i∈Nc
εiw

′
i behaves like additive

perturbation noise, will allows us to relate the CNN forumu-

lation to the PNN formulation.

Next, we will examine E(nc) and E(n2
c). First, it can

be easily shown that E(nc) = E
(∑

i∈Nc
εiw

′
i

)
= 0 since

E(εi) = 0. Next, for the second order statistics, we have:

E(n2
c) = E

(
∑

i∈Nc

εiw
′
i

)2

= E

(
N∑

i=1

εiw
′
i

)2

since εc = 0

= E(ε21w
′2
1 + . . . ε2iw

′2
i + . . .+ ε1ε2w

′
1w

′
2 + . . .

︸ ︷︷ ︸

cross−terms

)

= E(ε2i )

N∑

i=1

w′2
i + E(εiεj)

∑

i

∑

j 6=i

w′
iw

′
j

= (2σ2δ)‖w′‖22 + (σ2δ)
∑

i

∑

j 6=i

w′
iw

′
j

= 2σ2δ
[

‖w′‖22 + (1/2)
∑

i

∑

j 6=i

w′
iw

′
j

]

= 2σ2δ′ (small) (27)

where δ′ = δ[‖w′‖22 + (1/2)
∑

i

∑

j 6=i w
′
iw

′
j ]. Therefore,

this analysis of the CNN operation establishes a relation

between the CNN and the PNN formulation. However, one

may notice that in Eq. 26, the RHS is y′ instead of y. By

allowing multiple perturbation maps to combine using the

linear combination weights as shown before leads to y on

the RHS.

3.5. Properties of PNN

Recall that convolution leverages two important ideas

that can help improve a machine learning system: sparse

interactions and parameter sharing [5]. Not surprisingly, the

proposed PNN also share many of these nice properties.
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Figure 3: Variations in connectivity patterns among commonly practiced

types of convolutional operations such as (a) the regular convolution, (b)

locally connected convolution, (c) tiled convolution, and finally (d) fully

connected layer. For (a-c), top row is a 3× 3 convolution and the bottom

row is a 1× 1 convolution.

Sparse interactions: Firstly, PNN adds perturbation to

the input with perturbation mask of the same size as the input.

Therefore, it is easy to see that it only needs a single element

in the input to contribute to one element in the output per-

turbation map. Hence, sparse interaction. Secondly, PNN

utilizes a set of learnable linear weights, or equivalently 1×1
convolution, to combine various perturbation maps to create

one feature map. When a 1× 1 convolution is applied on the

input map, only one element contributes to the one output

elements, as opposed to a 3× 3 convolution which involve

9 elements of the input as depicted in Figure 3. Therefore,

1× 1 convolution provides the sparsest interactions possible.

Figure 3 shows various commonly practiced convolutions

such as (a) the regular convolution, (b) locally connected

convolution, (c) tiled convolution, and finally (d) fully con-

nected layer. It is important to note that while a perturbation

layer by itself has a receptive field of one pixel, the receptive

field of a PNN would typically cover the entire image with

an appropriate size and number of pooling layers.

Parameter sharing: Although the fixed perturbation

masks are shared among different inputs, they are not learn-

able, and therefore not considered as the parameters in this

context. Here, the parameter sharing is carried out again

by the 1× 1 convolution that linearly combines the various

non-linearly activated perturbation masks.

In addition, PNN has other nice properties such as

multi-scale equivalent convolutions i.e., adding different

amounts of perturbation noise is equivalent to applying con-

volutions at different scales. More specifically, adding small

noise corresponds to applying a small-sized convolutional

filter, and adding larger noise corresponds to convolving

with a larger filter. Without explicitly setting the filter sizes

throughout the network layers, PNN allows the network

to adapt to different filter sizes automatically and optimally.

Please refer to the supplementary materials for more analysis

and discussions. Finally, PNN also has distance preserving

property. Please also see supplementary for more details.

4. Implementation Details

4.1. Parameter Savings

The number of learnable parameters in the perturbation

layer is significantly lower than those of a standard con-

volutional layer for the same number of input and output

channels. Let the number of input and output channels be

p and q respectively. With a convolutional kernel of size of

h×w, a standard convolutional layer consists of p · h ·w · q
learnable parameters. The corresponding perturbation layer

consists of p ·m fixed perturbation masks and m ·q learnable

parameters (corresponding to the 1× 1 convolution), where

m is the number of fan-out channels of the perturbation layer,

and the fan-out ratio (m/p) is essentially the number of per-

turbation masks applied on each input channel. The 1 × 1
convolutions act on the m perturbed maps of the fixed filters

to generate the q-channel output. The ratio of the number of

parameters in CNN and PNN is:

# param. in CNN

# param. in PNN
=

p · h · w · q

m · q
=

p · h · w

m
(28)

For simplicity, assuming fan-out ratio m/p = 1 reduces the

parameter ratio to h · w. Therefore, numerically, PNN saves

k2 parameters during learning for k× k convolutional filters.

Also, PNN allows flexible adjustment of the fan-out ratio to

trade-off between efficiency and accuracy.

4.2. Learning with Perturbation Layers

Training a network end-to-end with perturbation layers

instead of standard convolutional layers is straightforward.

The gradients can be back propagated through the 1 × 1
convolutional layer and the additive perturbation masks in

much the same way as they can be back propagated through

standard convolutional layers. Backpropagation through the

noise perturbation layer is similar in spirit to propagating

gradients through layers without learnable parameters (e.g.,

ReLU, max pooling, etc.). However during learning, only

the learnable 1 × 1 filters are updated while the additive

perturbation masks remain unaffected. For the forward prop-

agation defined in Eq. 4, backpropagation can be computed

as:

∂ŷ

∂x
=

N∑

i=1

vi and
∂ŷ

∂vi
= x+ ni (29)

The perturbation masks are of the same spatial size as the in-

put tensor, and for each input channel, we can generate m/p
masks separately (m/p is the fan-out ratio). Specifically, the

additive noise in the perturbation masks are independently

uniformly distributed. The formulation of PNN does not

require the perturbation noise to be a specific type, as long as



it is zero-mean and has finite variance. Empirically, we have

observed that adding zero-mean Gaussian noise with dif-

ferent variances performs comparably to adding zero-mean

uniform noise with different range levels. Since uniform

distribution provides better control over the energy level of

the noise, our main experiments are carried out by using

uniformly distributed noise in the perturbation masks.

5. Experiments

5.1. ImageNet­1k Classification and Analysis

We evaluate our method on the ImageNet ILSVRC-2012

classification dataset [24] which consists of 1000 classes,

with 1.28 million images in the training set and 50k images

in the validation set, where we use for testing as commonly

practiced. We report the top-1 classification accuracy. All

the images are first resized so that the long edge is 256 pixels,

and then a 224× 224 crop is randomly sampled from an im-

age or its horizontal flip, with the per-pixel mean subtracted.

During testing, we adopt the single center-crop testing pro-

tocol. The network architecture we use for this experiment

is PNN-ResNet-18 [8], where each standard convolutional

layer in a residual unit is replaced by the proposed perturba-

tion layer, as shown in Figure 4.
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Figure 4: Perturbation residual module.Figure 4: Perturbation residual module.

We have experimented with various number of perturba-

tion masks per layer (64, 128, and 256) on the same PNN-

ResNet-18 model. The results are consolidated in Table 1

and in Figure 5. As can be seen, compared to the state-of-

the-art ResNet-18 performance (single center-crop protocol)

on a standard CNN [4, 8], the proposed PNN achieves com-

parable classification accuracy on ImageNet-1k. It is worth

noting that the lightweight design in PNN allows significant

parameter savings as well as statistical efficiency compared

to the standard CNNs. We have shown the parameter ratio

of CNN over PNN in the last column in Table 1. We also

Table 1: Classification accuracy (%) on ImageNet-1k (PNN vs. CNN)

#Mask PNN (ResNet-18) ResNet [4] Param. Ratio

256 71.84 73.27 (34) 0.9

128 61.74 69.57 (18) 1.8

64 45.92 69.57 (18) 5.9

present additional experimental results of the PNN-ResNet-

50 (with 256 perturbation masks) on ImageNet-1k. The

results in Table 2 show that PNN-ResNet-50 performs com-

petitively with the corresponding network with CNN layers

[4] on ImageNet-1k.
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Figure 5: Accuracy and loss on ImageNet-1k classification using PNN

(ResNet-18) with various number of perturbation masks per layer.

Table 2: Classification accuracy (%) on ImageNet-1k (PNN vs. CNN)

PNN-ResNet-18 ResNet-18 PNN-ResNet-50 ResNet-50

71.84 69.57 76.23 75.99

5.2. ImageNet­100 Classification and Analysis

In this section, we examine the image classification accu-

racy versus the noise level in the additive perturbation masks.

As discussed in the previous section, we are using zero-mean

uniform random noise in the perturbation masks, and the

noise level ` here refers to the range of the noise and the

PDF is: f(ni) = 1/(`− (−`)) for −` ≤ ni ≤ `.
For faster roll-out, we randomly select 100 classes with

the largest number of images (1300 training images in each

class, with a total of 130k training images and 5k testing

images), and report top-1 accuracy on this ImageNet-100

subset. The network architecture we use for this experiment

is PNN-ResNet-50 with 256 perturbation masks per layer.

The experimental results are shown in Table 3 as well as

in Figure 6. As we observe, adding different amount of

perturbation noise does affect classification performance.

Moreover, the proposed PNN’s performance is similar when

the noise level is low, say less than 1. As the noise levels

increase, the performance begins to deteriorate. This is

expected, as adding too much noise will suppress the useful

information carried by the signal itself.

Table 3: Classification accuracy (%) on 100-class ImageNet with varying

perturbation noise levels. (PNN: ResNet-50, 256 perturbation masks)

Noise 0.01 0.05 0.1 0.5 1 5

PNN 81.09 81.19 81.41 81.96 76.84 60.90

5.3. CIFAR­10, MNIST Classification and Analysis

In this section, we carry out further classification exper-

iments on CIFAR-10 [13] and MNIST [16] datasets. For

both datasets, the initial learning rate is set to 10−3 and is re-

duced by a factor of 10 at epoch 60, and then again at epoch

90. The best performing PNN models for each dataset are

detailed as follows. For CIFAR-10: PNN-ResNet-50, 64 per-

turbation masks per layer, and batch size of 10. For MNIST:
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Figure 6: Accuracy on ImageNet-100 classification using PNN (ResNet-50,

256 perturbation masks) with various noise levels.

PNN-ResNet-50, 32 perturbation masks per layer, and batch

size of 10. Table 4 consolidates the image classification

accuracy from our experiments. The best performing PNNs

are compared to the state-of-the-art methods as listed in the

curated leader board on various image classification tasks

[1], as well as several other leading methods such as ResNet

[8], Maxout Network [6], Network in Network (NIN) [19],

and LBCNN [12]. Our results indicate that PNN is highly

competitive with the state-of-the-art results on CIFAR-10.

Table 4: Classification accuracy (%) on CIFAR-10 and MNIST. PNN

columns only show the best performing model.

PNN SoTA [1] LBCNN ResNet Maxout NIN

CIFAR-10 94.05 96.53 92.99 93.57 90.65 91.19

MNIST 99.39 99.79 99.51 - 99.55 99.53

In addition, Table 5 shows the CIFAR-10 performance on

PNN-ResNet-18 model with different number of perturba-

tion masks per layer. As long as the number of perturbation

masks is not too few, the network is able to converge and

provide competitive classification performance.

Table 5: Classification accuracy (%) and ratio of parameters on CIFAR-

10 with varying number of perturbation masks. (PNN: ResNet-18, CNN:

standard ResNet-18)

#Mask 160 128 96 64 32 16 8

PNN 90.43 89.48 90.25 89.99 93.08 87.16 79.98

Ratio 1.3 2.0 3.5 7.9 31.0 120.1 451.1

The other factor we want to examine is the learning rate.

Since we know that learning rate is tightly connected to the

batch size from recent findings [7, 28], we vary the batch

size as we fix the initial learning rate to be 10−3. Table 6

shows the CIFAR-10 classification performance with vary-

ing batch size as well as varying number of perturbation

masks. For this dataset, smaller batch size seems to always

work better. This could be due to a batch size of 10 corre-

sponds to the optimal initial learning rate in this case. Also,

PNN does not require lots of perturbation masks per layer.

Usually, the optimal range is around 48-80 masks per layer

for this dataset, and doubling the number of masks from

64 to 128 does not seem to help improve the performance.

PNN achieves its best performance on CIFAR-10 with 64

perturbation masks with a ResNet-50 architecture, while the

best results for ResNet architecture are obtained with 110

layers, resulting in a 3.1× reduction in parameters while

achieving similar performance.

Table 6: Classification accuracy (%) on CIFAR-10 with varying batch size

and number of perturbation masks. (PNN: ResNet-50)

#Mask\ Batch Size 10 20 40 80

32 90.23 87.29 83.96 79.16

64 94.05 90.93 88.36 85.29

128 93.71 90.05 88.63 85.14

5.4. Object Detection and Analysis

For this task, we look at the Faster R-CNN model [31]

whose region proposal network and detector network both

share a common pretrained (on ImageNet) CNN. We study

both CNN architectures (VGG-16, ResNet-50) by replac-

ing the convolution layers with the proposed PNN modules.

Table 7 shows the mean average precision (mAP) on PAS-

CAL VOC’07 testing set (trained on VOC’07 train+val set,

scale=600, batchsize=1, and with ROI align). We observe

that PNN-VGG-16 and PNN-ResNet-50 perform compa-

rably to the corresponding network with conv layers [31].

Table 7: Detection results (mAP) on PASCAL VOC 2007 testing set.

PNN-VGG-16 VGG-16 PNN-ResNet-50 ResNet-101

69.6 70.2 72.8 75.2

6. Conclusions

Convolutional layers have become the mainstay of state-

of-the-art image classification tasks. Many different deep

neural network architectures have been proposed building

upon convolutional layers, including convolutional layers

with small receptive fields, sparse convolutional weights,

binary convolutional weights, factorizations of convolutional

weights etc. However, the basic premise of a convolutional

layer has remained the same through these developments.

In this paper, we sought to validate the utility of convolu-

tional layers through a module that is devoid of convolutional

weights and only computes weighted linear combinations

of non-linear activations of additive noise perturbations of

the input. Our experimental evaluations yielded a surprising

result, deep neural networks with the perturbation layers per-

form as well as networks with standard convolutional layers

across different scales and difficulty of image classification

and detection datasets. Our findings suggest that perhaps

high performance deep neural networks for image classifi-

cation and detection can be designed without convolutional

layers.
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