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Abstract. We present a new stage-wise learning paradigm for training
generative adversarial networks (GANs). The goal of our work is to pro-
gressively strengthen the discriminator and thus, the generators, with
each subsequent stage without changing the network architecture. We
call this proposed method the RankGAN. We first propose a margin-
based loss for the GAN discriminator. We then extend it to a margin-
based ranking loss to train the multiple stages of RankGAN. We focus
on face images from the CelebA dataset in our work and show visual
as well as quantitative improvements in face generation and completion
tasks over other GAN approaches, including WGAN and LSGAN.

Keywords: Generative adversarial networks · Maximum margin rank-
ing · Face generation.

1 Introduction

Generative modeling approaches can learn from the tremendous amount of data
around us to obtain a compact descriptions of the data distribution. Generative
models can provide meaningful insight about the physical world that human
beings can perceive, insight that can be valuable for machine learning systems.
Take visual perception for instance, in order to generate new instances, the
generative models must search for intrinsic patterns in the vast amount of visual
data and distill its essence. Such systems in turn can be leveraged by machines
to improve their ability to understand, describe, and model the visual world.

Recently, three classes of algorithms have emerged as successful generative
approaches to model the visual data in an unsupervised manner. Variational
autoencoders (VAEs) [20] formalize the generative problem as a maximum log-
likelihood based learning objective in the framework of probabilistic graphical
models with latent variables. The learned latent space allows for efficient recon-
struction of new instances. The VAEs are straightforward to train but at the
cost of introducing potentially restrictive assumptions about the approximate
posterior distribution. Also, their generated samples tend to be slightly blurry.
Autoregressive models such as PixelRNN [24] and PixelCNN [27] get rid of the
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Fig. 1. The RankGAN framework consists of a discriminator that ranks the quality of
the generated images from several stages of generators. The ranker guides the gener-
ators to learn the subtle nuances in the training data and progressively improve with
each stage.

latent variables and instead directly model the conditional distribution of every
individual pixel given the previous starting pixels. PixelRNN/CNN have a stable
training process via softmax loss and currently give the best log likelihoods on
the generated data, indicating high plausibility. However, they lack a latent code
and are relatively inefficient during sampling.

Generative adversarial networks bypass maximum-likelihood learning by train-
ing a generator using adversarial feedback from a discriminator. Using a latent
code, the generator tries to generate realistic-looking data in order to fool the
discriminator, while the discriminator learns to classify them apart from the
real training instances. This two-player minimax game is played until the Nash
equilibrium where the discriminator is no longer able to distinguish real data
from the fake ones. The GAN loss is based on a measure of distance between the
two distributions as observed by the discriminator. GANs are known to generate
highest quality of visual data by far in terms of sharpness and semantics.

Because of the nature of GAN training, the strength (or quality) of the
generator, which is the desired end-product, depends directly on the strength
of the discriminator. The stronger the discriminator is, the better the generator
has to become in generating realistic looking images, and vice-versa. Although
a lot of GAN variants have been proposed that try to achieve this by exploring
different divergence measures between the real and fake distributions, there has
not been much work dedicated to self-improvement of GAN, i.e., progressively
improving the GAN based on self-play with the previous versions of itself. One
way to achieve this is by making the discriminator not just compare the real and
fake samples, but also rank fake samples from various stages of the GAN, thus
forcing it to get better in attending to the finer details of images. In this work, we
propose a progressive training paradigm to train a GAN based on a maximum
margin ranking criterion that improves GANs at later stages keeping the network
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capacity same. Thus, our proposed approach is orthogonal to other progressive
paradigms such as [18] which increase the network capacity to improve the GAN
and the resolution of generated images in a stage-wise manner. We call our
proposed method RankGAN.

Our contributions include (1) a margin-based loss function for training the
discriminator in a GAN; (2) a self-improving training paradigm where GANs
at later stages improve upon their earlier versions using a maximum-margin
ranking loss (see Figure 1); and (3) a new way of measuring GAN quality based
on image completion tasks.

1.1 Related Work

Since the introduction of Generative Adversarial Networks (GANs) [7], numer-
ous variants of GAN have been proposed to improve upon it. The original GAN
formulation suffers from practical problems such as vanishing gradients, mode
collapse and training instability. To strive for a more stable GAN training, Zhao
et al . proposed an energy-based GAN (EBGAN) [31] which views the discrim-
inator as an energy function that assigns low energy to the regions near the
data manifold and higher energy to other regions. The authors have shown one
instantiation of EBGAN using an autoencoder architecture, with the energy be-
ing the reconstruction error. The boundary-seeking GAN (BGAN) [10] extended
GANs for discrete data while improving training stability for continuous data.
BGAN aims at generating samples that lie on the decision boundary of a current
discriminator in training at each update. The hope is that a generator can be
trained in this way to match a target distribution at the limit of a perfect dis-
criminator. Nowozin et al . [23] showed that the generative-adversarial approach
in GAN is a special case of an existing more general variational divergence esti-
mation approach, and that any f -divergence can be used for training generative
neural samplers. On these lines, least squares GAN (LSGAN) [22] adopts a least
squares loss function for the discriminator, which is equivalent to minimizing the
Pearson χ2 divergence between the real and fake distributions, thus providing
smoother gradients to the generator.

Perhaps the most seminal GAN-related work since the inception of the orig-
inal GAN [7] idea is the Wasserstein GAN (WGAN) [3]. Efforts have been made
to fully understand the training dynamics of GANs through theoretical analy-
sis in [2] and [3], which leads to the creation of WGAN. By incorporating the
smoother Wasserstein distance metric as the objective, as opposed to the KL or
JS divergences, WGAN is able to overcome the problems of vanishing gradient
and mode collapse. WGAN also made it possible to first train the discriminator
till optimality and then gradually improve the generator making the training and
balancing between the generator and the discriminator much easier. Moreover,
the new loss function also correlates well with the visual quality of generated
images, thus providing a good indicator for training progression.

On the other hand, numerous efforts have been made to improve the training
and performance of GANs architecturally. Radford et al . proposed the DCGAN
[25] architecture that utilized strided convolution and transposed-convolution to
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improve the training stability and performance of GANs. The Laplacian GAN
(LAPGAN) [5] is a sequential variant of the GAN model that generates im-
ages in a coarse-to-fine manner by generating and upsampling in multiple steps.
Built upon the idea of sequential generation of images, the recurrent adversarial
networks [12] has been proposed to let the recurrent network learn the optimal
generation procedure by itself, as opposed to imposing a coarse-to-fine structure
on the procedure. The stacked GAN [11] consists of a top-down stack of GANs,
each trained to generate plausible lower-level representations, conditioned on
higher-level representations. Discriminators are attached to each feature hierar-
chy to provide intermediate supervision. Each GAN of the stack is first trained
independently, and then the stack is trained end-to-end. The generative multi-
adversarial networks (GMAN) [6] extends the GANs to multiple discriminators
that collectively scrutinize a fixed generator, thus forcing the generator to gen-
erate high fidelity samples. Layered recursive generative adversarial networks
(LR-GAN) [29] generates images in a recursive fashion. First a background is
generated, conditioned on which, the foreground is generated, along with a mask
and an affine transformation that together define how the background and fore-
ground should be composed to obtain a complete image.

The introspective adversarial networks (IAN) [4] proposes to hybridize the
VAE and the GAN by leveraging the power of the adversarial objective while
maintaining the efficient inference mechanism of the VAE.

Among the latest progress in GANs, Karras et al . [18] has the most impres-
sive image generation results in terms of resolution and image quality. The key
idea is to grow both the generator and discriminator progressively: starting from
a low resolution, new layers that model increasingly fine details are added as the
training progresses. This both speeds the training up and greatly stabilizes it,
allowing us to produce images of unprecedented quality. On the contrary, we
focus on improving the performance of GANs without increasing model capac-
ity, making our work orthogonal to [18]. In the following sections, we will first
discuss the background and motivation behind our work, followed by details of
the proposed approach.

2 Background

We first provide a brief background of a few variants of GAN to motivate the
maximum margin ranking based GAN proposed in this paper.

2.1 GAN and WGAN

The GAN framework [7] consists of two components, a Generator Gθ(z) : z → x

that maps a latent vector z drawn from a known prior pz(z) to the data space and
a Discriminator Dω(x) : x → [0, 1] that maps a data sample (real or generated)
to a likelihood value in [0, 1]. The generator G and the discriminator D play
adversary to each other in a two-player minimax game while optimizing the
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following GAN objective:

min
G

max
D

V (G,D) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z))] (1)

where x is a sample from the data distribution pdata. This objective function is
designed to learn a generator G that minimizes the Jensen-Shannon divergence
between the real and generated data distributions.

Many of the variants of GAN described in Section 1.1 differ in the objective
function that is optimized to minimize the divergence between the real and
generated data distributions. Wasserstein GAN [3, 2] has been proposed with
the goal of addressing the problems of vanishing gradients and mode collapse in
the original GAN. Instead of minimizing the cross-entropy loss, the discriminator
in WGAN is optimized to minimize the Wasserstein-1 (Earth Movers’) distance
W (Pr,Pg) between the real and generated distributions.

W (Pr,Pg) = inf
γ∈Γ (Pr,Pg)

E(x,y)∼γ

[

‖x− y‖
]

(2)

where Γ (Pr,Pg) is the set of all joint distributions γ(x, y) whose marginals
are Pr and Pg respectively. Given the intractability of finding the infimum
in Eqn. (2), WGAN optimizes the dual objective given by the Kantorovich-
Rubinstein duality [28] instead, which also constraints the discriminator to be a
1-Lipshichtz function.

2.2 Limitations with GANs and its Variants

An essential part of the adversarial game being played in a GAN is the discrim-
inator, which is modeled as a two-class classifier. Thus, intuitively, the stronger
the discriminator, the stronger (better) should be the generator. In the origi-
nal GAN, stronger discriminator led to problems like vanishing gradients [2].
Variants like WGAN and LSGAN attempt to solve this problem by proposing
new loss functions that represent different divergence measures. We illustrate
this effect in Figure 2. The scores of the standard GAN model saturate and
thus provide no useful gradients to the discriminator. The WGAN model has
a constant gradient of one while RankGAN model (described in the next sec-
tion) has a gradient that depends on the slope of the linear decision boundary.
Therefore, from a classification loss perspective, RankGAN generalizes the loss
of the WGAN critic. In practice, these variants don’t easily reach convergence,
partially because of limited network capacity and finite sample size of datasets.
Loss functions for optimizing the discriminator are typically averaged over the
entire dataset or a mini-batch of samples. As a result, the discriminator often
keeps on increasing the margin between well-separated real and fake samples
while struggling to classify the more difficult cases. Furthermore, we argue that
a margin-based loss, as in the case of support vector machines, enables the dis-
criminator to focus on the difficult cases once the easier ones have been well
classified, making it a more effective classifier. Going one step further, by rank-
ing several versions of the generator, the discriminator would more effectively
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Fig. 2. Scores of the optimal discriminator for GAN, WGAN, LSGAN and RankGAN
when learning to differentiate between two normal distributions. The GAN scores are
saturated and hence results in vanishing gradients. The WGAN and RankGAN models
do not suffer from this problem. See text for more details.

learn the subtle nuances in the training data. The supervision from such a strong
discriminator would progressively improve the generators. This intuition forms
the basic motivation behind our proposed approach.

3 Proposed Method: RankGAN

In this section, we describe our proposed GAN training framework - RankGAN.
This model is designed to address some of the limitations of traditional GAN
variants. RankGAN is a stage-wise GAN training paradigm which aims at im-
proving the GAN convergence at each stage by ranking one version of GAN
against previous versions without changing the network architecture (see Fig-
ure 3). The two basic aspects of our proposed approach are the following:

– We first adopt a margin based loss for the discriminator of the GAN, as
opposed to the cross-entropy loss of the original GAN and the WGAN loss.
We refer to this model as MarginGAN.

– We extend the margin-based loss into a margin-based ranking loss. This
enables the discriminator to rank multiple stages of generators by comparing
the scores of the generated samples to those of the real samples (see Figure 4
for an illustration). By applying certain constraints on the discriminator,
which we will describe later, we can use this mechanism to steadily improve
the discriminator at each stage, thereby improving the quality of generated
samples.

The complete RankGAN training flow is shown in Algorithm 1. We now describe
the various novelties in our approach.
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Fig. 3. Overall flowchart of the proposed RankGAN method. Our model consists of (1)
An encoder that maps an image to a latent representation. (2) A series of generators
that are learned in a stage-wise manner. (3) A series of discriminators that are learned
to differentiate between the real and the generated data. (4) A ranker that ranks the
real face image and the corresponding generated face images at each stage. In practice
the discriminator and the ranker are combined into a single model.

3.1 Margin Loss

The intuition behind the MarginGAN loss is as follows. WGAN loss treats a gap
of 10 or 1 equally and it tries to increase the gap even further. The MarginGAN
loss will focus on increasing separation of examples with gap 1 and leave the
samples with separation 10, which ensures a better discriminator, hence a better
generator. The ε-margin loss is given by:

Lmargin = [Dw(Gθ(z)) + ε−Dw(x)]+ (3)

where [x]+ = max(0, x) is the hinge loss. The margin loss becomes equal to the
WGAN loss when the margin ε → ∞, hence the generalization.

3.2 Ranking Loss

The ranking loss uses margin loss to train the generator of our GAN by ranking
it against previous version of itself. For stage i discriminator Di and generator
Gi, the ranking loss is given by:

Ldisc rank = [Di (Gi(z))−Di (Gi−1(z))]+

Lgen rank = [Di (x)−Di (Gi(z))]+
(4)

The ranking losses for the discriminator and the generator are thus zero margin
loss functions (ε → 0) where the discriminator Di is trying to have a zero margin
between Di(Gi(z)) and Di(Gi−1(z)), while the generator is trying to have zero
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margin between Di(Gi(z)) and Di(x) (see Figure 4). The discriminator is trying
to push Di(Gi(z)) down to Di(Gi−1(z)) so that it gives the same score to the
fake samples generated by stage i generator as those generated by stage i − 1
generator. In other words, the discriminator is trying to become as good in
detecting fake samples from Gi as it is in detecting fake samples from Gi−1. This
forces the generator to ‘work harder’ to fool the discriminator and give the same
score to the fake samples Gi(z) as to the real samples. This adversarial game
leads to the self-improvement of GAN with subsequent stages.

3.3 Encoder E

Although RankGAN works even without an encoder, in practice, we have ob-
served that adding an encoder improves the performance and training conver-
gence of RankGAN considerably. This is because adding an encoder allows the
discriminator to rank generated and real samples based on image quality and
realisticity rather than identity. To obtain the encoder, we first train a VAE [20]
in the zeroth stage. After the VAE is trained, the encoder is frozen and forms the
first component of the RankGAN architecture (see Figure 3). During RankGAN
training, the encoder takes the real image x and outputs a mean µ(x) and vari-
ance Σ(x) to sample the latent vector as z ∼ N (µ(x),Σ(x)) which is used by
the subsequent stage generators to generate fake samples for training. The VAE
decoder can also be used as the zeroth stage generator.
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Fig. 4. RankGAN stage-wise training progression following Di(x) > Di(Gi(z)) >

Di(Gi−1(z)). At stage i, Di(x) and Di(Gi−1(z)) are clamped at the initial margins m0

and m1, respectively while Di(Gi(z)) slowly increases from m1 to m2 (point of Nash
equilibrium) at the end of stage i. The same is repeated at stage i+ 1, where Di+1(x)
and Di+1(Gi(z)) are clamped at margins m0 and m2 respectively while Di+1(Gi+1(z))
slowly increases from m2 to m3 till convergence.
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3.4 Discriminator Penalties

We enforce Lipschitz constrain on the discriminator using gradient penalty (GP)
as proposed by Gulrajani et al . [8]. GP penalizes the norm of the gradient of
the discriminator w.r.t. its input x̂ ∼ Px̂, which enforces a soft version of the
constraint. The GP loss is given by:

Lgp = Ex̂∼P
x̂

[

(‖∇x̂D(x̂)‖2 − 1)2
]

(5)

In addition, Eqn. (4) does not prevent the discriminator from cheating by letting
Di(x) and Di(Gi−1(z)) to simultaneously converge to the level of Di(Gi(z)) (blue
and green curves converging towards the red curve in Figure 4), thereby defeating
the purpose of training. To prevent this, we add a penalty term to the overall
ranking loss given by:

Lclamp =
[

m
high
i −Di(x)

]

+
+

[

Di(Gi−1(z))−mlow
i

]

+
(6)

where m
high
i and mlow

i are the high and low margins for stage-i RankGAN re-
spectively. Thus, the clamping loss constraints the discriminator so as not to let
Di(x) go below m

high
i and Di−1(Gi(z)) go above mlow

i . We call this Discrimi-

nator Clamping. The overall discriminator loss thus becomes:

Ldisc = Ldisc rank + λgpLgp + λclampLclamp (7)

In our experiments, we find λgp = 10 and λclamp = 1000 to give good results.

4 Experiments

In this section, we describe our experiments evaluating the effectiveness of the
RankGAN against traditional GAN variants i.e., WGAN and LSGAN. For this
purpose, we trained the RankGAN, WGAN and LSGAN models on face images
and evaluated their performance on face generation and face completion tasks.
Due to space limit, we will omit some implementation details in the paper. Full
implementation details will be made publicly available.

4.1 Database and Metrics

We use the CelebA dataset [21] which is a large-scale face attributes dataset
with more than 200K celebrity images covering large pose variations and back-
ground clutter. The face images are pre-processed and aligned into an image size
of 64× 64 while keeping a 90-10 training-testing split.

To compare the performance of RankGAN and other GAN variants quantita-
tively, we computed several metrices including Inception Score [26] and Fréchet
Inception distance (FID) [9]. Although, Inception score has rarely been used to
evaluate face generation models before, we argue that since it is based on sam-
ple entropy, it will favor sharper and more feature-full images. The FID, on the
other hand, captures the similarity of the generated images to the real ones, thus
capturing their realisticity and fidelity.
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Algorithm 1: RankGAN Training

αD, αG ← 5e− 5, αE ← 1e− 4;
for i = 1 ... nstages do

if i = 1 then

train VAE with Encoder E and Decoder G1;
train Discriminator D1 for 1 epoch using WGAN loss of Eqn. 5;

else

j, k ← 0, 0;
initialize Di ← Di−1 and Gi ← Gi−1;
freeze Di−1 and Gi−1;

compute m
high
i

= E[Di−1(xval)] and mlow
i = E[Di−1(Gi−1(z))];

while j < nepochs do

while k < 5 do

obtain real samples x and latent vectors z ∼ E(x);
compute Ldisc using Eqn. 7;
optimize Di using AdamOptimizer(αD, β1 = 0, β2 = 0.99);
j ← j + 1, k ← k + 1

end

compute Lgen using Eqn. 4;
optimize Gi using AdamOptimizer(αG , β1 = 0, β2 = 0.99);
k ← 0

end

end

end

4.2 Evaluations on Face Generation Tasks

For all the experiments presented in this paper, we use the same network archi-
tecture based on the one used in [18]. Both the discriminators and generators
are optimized using the Adam optimizer [19] with β1 = 0.0 and β2 = 0.99 and a
learning rate of 5e− 5. The criterion to end a stage is based on the convergence
of that particular stage and is determined empirically. In practice, we terminate
a stage when either the discriminator gap stabilizes for 10-20 epochs or at least
200 stage-epochs are finished, whichever is earlier. Lastly, no data augmentation
was used for any of our experiments.

Figure 5 shows the visual progression of Open-Set face generation results from
various stages in RankGAN when the latent vector z is obtained by passing
the input faces through the encoder E . Figure 6 shows the visual progression
of face generation results when the latent vectors z’s are randomly generated
without the encoder E . In both the cases, we can clearly see that as the stage
progresses, RankGAN is able to generate sharper face images which are visually
more appealing.

Quantitative results are consolidated in Table 1 with FID (the lower the bet-
ter) and Inception score (the higher the better). As can be seen, as the training
progresses from stage-1 to stage-3, the trend conforms with the visual results
where stage-3 yields the highest Inception score and the lowest FID.
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Table 1. Quantitative results for face image generation with and without the encoder.

With Encoder Without Encoder
FID Inception Score FID Inception Score

Real N/A 2.51 N/A 2.51
Stage-1 122.17 1.54 140.45 1.54
Stage-2 60.45 1.78 75.53 1.75
Stage-3 46.01 1.89 63.34 1.91

(a) Input faces. (b) Stage 1 generated faces, Open Set.

(c) Stage 2 generated faces, Open Set. (d) Stage 3 generated faces, Open Set.

Fig. 5. Face generation with RankGAN. Latent vectors z’s are obtained by passing the
input faces through the encoder E .

(a) Stage 1, Open Set. (b) Stage 2, Open Set. (c) Stage 3, Open Set.

Fig. 6. Face generation with RankGAN. Latent vectors z’s are randomly generated
w/o encoder E .

4.3 Evaluations on Face Completion Tasks

A good generative model should perform well on missing data problems. Moti-
vated by this argument, we propose to use image completion as a quality measure
for GAN models. In short, the quality of the GAN models can be quantitatively
measured by the image completion fidelity, in terms of PSNR, SSIM and other
metrics. Traditional shallow methods [16, 17] have shown some promising results
but still struggle when dealing with face variations. Deep learning methods based
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Fig. 7. Interpolation between two latent vectors which are obtained by passing the
input faces through the encoder E . The 3 rows within each montage correspond to
Stage 1, 2, and 3 in RankGAN.

Fig. 8. Interpolation between two latent vectors that are randomly selected (without
the encoder E) from a unit normal distribution. The 3 rows within each montage
correspond to Stage 1, 2, and 3 in RankGAN.

on GANs are expected to handle image variations much more effectively. To take
on the image completion task, we need to utilize both the G and D from the
RankGAN and the baselines WGAN and LSGAN, pre-trained with uncorrupted
data. After training, G is able to embed the images from pdata onto some non-
linear manifold of z. An image that is not from pdata (e.g ., with missing pixels)
should not lie on the learned manifold. We seek to recover the image ŷ on the
manifold “closest” to the corrupted image y as the image completion result. To
quantify the “closest” mapping from y to the reconstruction, we define a function
consisting of contextual and perceptual losses [30]. The contextual loss mea-
sures the fidelity between the reconstructed image portion and the uncorrupted
image portion, and is defined as:

Lcontextual(z) = ‖M� G(z)−M� y‖1 (8)

where M is the binary mask of the uncorrupted region and � denotes the
Hadamard product. The perceptual loss encourages the reconstructed image
to be similar to the samples drawn from the training set (true distribution pdata).
This is achieved by updating z to fool D, or equivalently by maximizing D(G(z)).
As a result, D will predict G(z) to be from the real data with a high probability.

Lperceptual(z) = −D(G(z)) (9)

Thus, z can be updated, using backpropagation, to lie closest to the corrupted
image in the latent representation space by optimizing the objective function:

ẑ = argmin
z

(Lcontextual(z) + λLperceptual(z)) (10)

where λ (set to 10 in our experiments) is a weighting parameter. After finding
the optimal solution ẑ, the reconstructed image ycompleted can be obtained by:

ycompleted = M� y + (1−M)� G(ẑ) (11)
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Table 2. Data: CelebA, Mask: Center Large

FID Inception PSNR SSIM OpenFace (AUC) PittPatt (AUC)
Original N/A 2.3286 N/A N/A 1.0000 (0.9965) 19.6092 (0.9109)
Stage-1 27.09 2.1524 22.76 0.7405 0.6726 (0.9724) 10.2502 (0.7134)
Stage-2 23.69 2.1949 21.87 0.7267 0.6771 (0.9573) 9.9718 (0.8214)
Stage-3 27.31 2.2846 23.30 0.7493 0.6789 (0.9749) 10.4102 (0.7922)
WGAN 17.03 2.2771 23.26 0.7362 0.5554 (0.9156) 8.1031 (0.7373)
LSGAN 23.93 2.2636 23.11 0.7361 0.6676 (0.9659) 10.1482 (0.7154)

Metrics: In addition to the FID and Inception Score, we used metrics such
as PSNR [14], SSIM, OpenFace [1] feature distance under normalized cosine
similarity (NCS) [13] and PittPatt face matching score [15] to measure fidelity
between the original and reconstructed face images. The last two are off-the-shelf
face matchers that can be used to examine the similarity between pairs of face
images. For these two matchers, we also obtain the area under the ROC curves
(AUC) score as an auxiliary metric.

Occlusion Masks: We carried out face completion experiments on four types
of facial masks, which we termed as: ‘Center Small’, ‘Center Large’, ‘Periocular
Small’, and ‘Periocular Large’.

Open-Set: It is important to note that all of our experiments are carried out
in an Open-Set fashion, i.e., none of the images and subjects were seen during
training. This is of course a more challenging setting than Closed-Set and reflects
the generalization performance of these models.

Discussion: Due to lack of space, we only show results based on the Center
Large mask in the main paper (more qualitative and quantitative results can be
found in the supplementary). These results have been summarized in Table 2
and can be visualized in Figure 9. As can be seen in Table 2, RankGAN Stage-3
outperforms all other baselines in all metrics except FID. The lower FID value
for WGAN can be attributed to the fact that FID captures distance between two
curves and is, in a way, similar to the Wasserstein distance that is minimized in
the case of WGAN. The Stage-3 images appear to be both sharp (as measured
by the Inception Score) as well as fidelity-preserving as compared to the original
images (as measured by identity matching metrics). All the four identity-based
metrics, PSNR, SSIM, OpenFace scores, and PittPatt scores are higher for Stage-
3 of RankGAN. This is due to the fact that our formulation enforces identity-
preservation through the encoder and the ranking loss.

5 Conclusions

In this work, we introduced a new loss function to train GANs - the margin
loss, that leads to a better discriminator and in turn a better generator. We
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(a) Original faces. (b) Masked faces. (‘Center Large’)

(c) WGAN completion, Open Set. (d) LSGAN completion, Open Set.

(e) Stage 1 completion, Open Set. (f) Stage 2 completion, Open Set.

(g) Stage 3 completion, Open Set.

Fig. 9. Best completion results with RankGAN on CelebA, ‘Center Large’ mask.

then extended the margin loss to a margin-based ranking loss and evolved a new
multi-stage GAN training paradigm that progressively strengthens both the dis-
criminator and the generator. We also proposed a new way of measuring GAN
quality based on image completion tasks. We have seen both visual and quanti-
tative improvements over the baselines WGAN and LS-GAN on face generation
and completion tasks.
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