
Local Binary Convolutional Neural Networks

Felix Juefei-Xu
Carnegie Mellon University

felixu@cmu.edu

Vishnu Naresh Boddeti
Michigan State University

vishnu@msu.edu

Marios Savvides
Carnegie Mellon University

msavvid@ri.cmu.edu

Abstract

We propose local binary convolution (LBC), an efficient
alternative to convolutional layers in standard convolutional
neural networks (CNN). The design principles of LBC are
motivated by local binary patterns (LBP). The LBC layer
comprises of a set of fixed sparse pre-defined binary convolu-
tional filters that are not updated during the training process,
a non-linear activation function and a set of learnable lin-
ear weights. The linear weights combine the activated filter
responses to approximate the corresponding activated fil-
ter responses of a standard convolutional layer. The LBC
layer affords significant parameter savings, 9x to 169x in
the number of learnable parameters compared to a standard
convolutional layer. Furthermore, the sparse and binary na-
ture of the weights also results in up to 9x to 169x savings in
model size compared to a standard convolutional layer. We
demonstrate both theoretically and experimentally that our
local binary convolution layer is a good approximation of a
standard convolutional layer. Empirically, CNNs with LBC
layers, called local binary convolutional neural networks
(LBCNN), achieves performance parity with regular CNNs
on a range of visual datasets (MNIST, SVHN, CIFAR-10, and
ImageNet) while enjoying significant computational savings.

1. Introduction
Deep learning has been overwhelmingly successful in a

broad range of applications, such as computer vision, speech
recognition / natural language processing, machine trans-
lation, bio-medical data analysis, and many more. Deep
convolutional neural networks (CNN), in particular, have
enjoyed huge success in tackling many computer vision
problems over the past few years, thanks to the tremendous
development of many effective architectures, AlexNet [21],
VGG [30], Inception [33] and ResNet [12, 13] to name a
few. However, training these networks end-to-end with fully
learnable convolutional kernels (as is standard practice) is (1)
computationally very expensive, (2) results in large model
size, both in terms of memory usage and disk space, and
(3) prone to over-fitting, under limited data, due to the large

number of parameters.
On the other hand, there is a growing need for deploying,

both for learning and inference, these systems on resource
constrained platforms like, autonomous cars, robots, smart-
phones, smart cameras, smart wearable devices, etc. To
address these drawbacks, several binary versions of CNNs
have been proposed [6, 5, 28] that approximate the dense
real-valued weights with binary weights. Binary weights
bear dramatic computational savings through efficient imple-
mentations of binary convolutions. Complete binarization of
CNNs, though, leads to performance loss in comparison to
real-valued network weights.

In this paper, we present an alternative approach to reduc-
ing the computational complexity of CNNs while performing
as well as standard CNNs. We introduce the local binary
convolution (LBC) layer that approximates the non-linearly
activated response of a standard convolutional layer. The
LBC layer comprises of fixed sparse binary filters (called
anchor weights), a non-linear activation function and a set of
learnable linear weights that computes weighted combina-
tions of the activated convolutional response maps. Learning
reduces to optimizing the linear weights, as opposed to op-
timizing the convolutional filters. Parameter savings of at
least 9× to 169× can be realized during the learning stage
depending on the spatial dimensions of the convolutional
filters (3 × 3 to 13 × 13 sized filters respectively), as well
as computational and memory savings due to the sparse na-
ture of the binary filters. CNNs with LBC layers, called
local binary convolutional neural networks (LBCNN)1, have
much lower model complexity and are as such less prone to
over-fitting and are well suited for learning and inference of
CNNs in resource-constrained environments.

Our theoretical analysis shows that the LBC layer is a
good approximation for the non-linear activations of stan-
dard convolutional layers. We also demonstrate empirically
that CNNs with LBC layers performs comparably to reg-
ular CNNs on a range of visual datasets (MNIST, SVHN,
CIFAR-10, and ImageNet) while enjoying significant sav-
ings in terms of the number of parameters during training,

1Implementation and future updates will be available at http://
xujuefei.com/lbcnn.

1

http://xujuefei.com/lbcnn
http://xujuefei.com/lbcnn

computations, as well as memory requirements due to the
sparse and pre-defined nature of our binary filters, in com-
parison to dense learnable real-valued filters.

Related Work: The idea of using binary filters for con-
volutional layers is not new. BinaryConnect [6] has been
proposed to approximate the real-valued weights in neural
networks with binary weights. Given any real-valued weight,
it stochastically assigns +1 with probability p that is taken
from the hard sigmoid output of the real-valued weight, and
−1 with probability 1−p. Weights are only binarized during
the forward and backward propagation, but not during the
parameter update step, in which high-precision real-valued
weights are necessary for updating the weights. Therefore,
BinaryConnect alternates between binarized and real-valued
weights during the network training process. Building upon
BinaryConnect [6], binarized neural network (BNN) [5] and
quantized neural network (QNN) [14] have been proposed,
where both the weights and the activations are constrained to
binary values. These approaches lead to drastic improvement
in run-time efficiency by replacing most 32-bit floating point
multiply-accumulations by 1-bit XNOR-count operations.

Both BinaryConnect and BNN demonstrate the efficacy
of binary networks on MNIST, CIFAR-10, and SVHN
dataset. Recently, XNOR-Net [28] builds upon the design
principles of BNN and proposes a scalable approach to learn-
ing binarized networks for large-scale image recognition
tasks, demonstrating high performance on the ImageNet
classification task. All the aforementioned approaches uti-
lize high-precision real-valued weights during weight update,
and achieve efficient implementations using XNOR bit count.
XNOR-Net differs from BNN in the binarization method and
the network architecture. In addition to network binarization,
model compression and network quantization techniques
[15, 35, 10, 2, 7, 11, 31, 8] are another class of techniques
that seek to address the computational limitations of CNNs.
However, the performance of such methods are usually upper
bounded by the uncompressed and unquantized models.

Our proposed LBCNN is notably different from fully
binarized neural networks and draws inspiration from local
binary patterns. LBCNN, with a hybrid combination of fixed
and learnable weights offers an alternate formulation of a
fully learnable convolution layer. By only considering sparse
and binary weights for the fixed weights, LBCNN is also able
to take advantage of all the efficiencies, both statistical and
computational, afforded by sparsity and weight binarization.
We demonstrate, both theoretically and empirically, that
LBCNN is a very good approximation of a standard learnable
convolutional layer.

2. Forming LBP with Convolutional Filters
Local binary patterns (LBP) is a simple yet very power-

ful hand-designed descriptor for images rooted in the face
recognition community. LBP has found wide adoption in

0
0

01

1
1

01
C C

0
0

0
0

0
00

0
0 0

0

0

0 0
0

11
1

1
1 1

1 1
1C C

Figure 1: (L-R) 3 × 3 patch and its LBP encoding, 5 × 5 patch and its
LBP encoding.

many other computer vision, pattern recognition, and image
processing applications [27].

The traditional LBP operator [18, 25, 19, 17] operates
on image patches of size 3 × 3, 5 × 5, etc. The LBP de-
scriptor is formed by sequentially compare the intensity of
the neighboring pixels to that of the central pixel within the
patch. Neighbors with higher intensity value, compared to
the central pixel, are assigned a value of 1 and 0 otherwise.
Finally, this bit string is read sequentially and mapped to
a decimal number (using base 2) as the feature value as-
signed to the central pixel. These aggregate feature values
characterize the local texture in the image. The LBP for the
center pixel (xc, yc) within a patch can be represented as
LBP(xc, yc) =

∑L−1
n=0 s(in, ic) · 2n where in denotes the

intensity of the nth neighboring pixel, ic denotes the inten-
sity of the central pixel, L is the length of the sequence, and
s(·) = 1 if in ≥ ic and s(·) = 0 otherwise. For example, a
N ×N neighborhood consists of N2− 1 neighboring pixels
and therefore results in a N2 − 1 long bit string. Figure 1
shows examples of LBP encoding for a local image patch of
size 3× 3 and 5× 5.

Different parameters and configurations of the LBP for-
mulation can result in drastically different feature descriptors.
We now present a few variations that can help generalize the
basic LBP descriptor:

Base: A base of two is commonly used to encode the LBP
descriptor. Consequently the weights for encoding the LBP
bit string are constrained to powers of two. Relaxing these
constraints and allowing the weights to take any real value
can potentially generalize the LBP descriptor.

Pivot: The physical center of the neighborhood is typically
chosen as the pivot for comparing the intensity of the pixels
in the patch. Choosing different locations in the patch as
the pivot can enable LBP to encode different local texture
patterns. Furthermore, the comparative function s(·) can be
a function of multiple pivots resulting in a more fine-grained
encoding of the local texture.

Ordering: LBP encodes the local texture of a patch by choos-
ing a specific order of pixels to partially preserve the spatial
information of the patch. For a fixed neighborhood size and
pivot, different choice of the ordering the neighbors results
in different encoding of the local texture.

All the aforementioned variations i.e., the choice of pivot,
the base, and the order of the encoding neighbors, are usually

Weighted
sum of all the

bit maps

-1
1

-11

-1
1

-1
1

-1
1

-1 1

-1
1

-1
1

Figure 2: Reformulation of the LBP encoding using convolutional filters.

determined empirically and depend on the application. Being
able to generalize these factors of variations in a learnable
framework is one of the motivations and inspiration behind
the design of LBCNN as discussed next.

First, let us reformulate the LBP encoding more efficiently
using convolutional filters. Traditional implementations of
encoding LBP features use a 3× 3 window to scan through
the entire image in an overlapping fashion. At each 3 × 3
patch, the encoding involves (1) compute the difference be-
tween the pivot and the neighboring pixels (or pairs of pixels
more generally), (2) a non-linear thresholding operation map-
ping the pixel differences to binary values, and (3) pooling
the binary values through a weighed sum.

Now, a simple convolution of the entire image with
eight 3 × 3 convolutional filters, followed by simple bi-
narization can achieve the same goal, as shown in Fig-
ure 2. Each convolution filter is a 2-sparse difference fil-
ter. The 8 resulting bit maps after binarization are also
shown. Standard formulations of LBP are simply a weighted
sum of all the bit maps using a pre-defined weight vec-
tor v = [27, 26, 25, 24, 23, 22, 21, 20]. Therefore, stan-
dard LBP feature extraction can be reformulated as y =∑8
i=1 σ(bi ∗ x) · vi, where x ∈ Rd is vectorized version of

the original image, bi’s are the sparse convolutional filters,
σ is the non-linear binarization operator, the Heaviside step
function in this case, and y ∈ Rd is the resulting LBP image.
By appropriately changing the linear weights v, the base
and the ordering of the encoding can be varied. Similarly by
appropriately changing the non-zero (+1 and -1) support in
the convolutional filters allows us to change the pivot. The
reformulation of LBP as described above forms the basis of
the proposed LBC layer.

3. LBCNN
3.1. Local Binary Convolution Module

Somewhat surprisingly, the reformulation of traditional
LBP descriptor described above possess all the main com-
ponents required by convolutional neural networks. For

instance, in LBP, an image is first filtered by a bank of con-
volutional filters followed by a non-linear operation through
a Heaviside step function. Finally, the resulting bit maps are
linearly combined to obtain the final LBP glyph, which can
serve as the input to the next layer for further processing.

This alternate view of LBP motivates the design of the
local binary convolution (LBC) layer as an alternative of a
standard convolution layer. Through the rest of this paper
neural networks with the LBC layer are referred to as local
binary convolutional neural networks (LBCNN)2. As shown
in Figure 3, the basic module of LBCNN consists of m pre-
defined fixed convolutional filters (anchor weights) bi, i ∈
[m]. The input image xl is filtered by these LBC filters to
generate m difference maps that are then activated through
a non-linear activation function, resulting in m bit maps.
To allow for back propagation through the LBC layer, we
replace the non-differentiable Heaviside step function in LBP
by a differentiable activation function (sigmoid or ReLU).
Finally, them bit maps are lineally combined bym learnable
weights Vl,i, i ∈ [m] to generate one channel of the final
LBC layer response. The feature map of the LBC layer
serves as the input xl+1 for the next layer. The LBC layer
responses to a generalized multi-channel input xl can be
expressed as:

xtl+1 =

m∑
i=1

σ

(∑
s

bsi ∗ xsl

)
· Vtl,i (1)

where t is the output channel and s is the input channel. It
is worth noting that the final step computing the weighted
sum of the activations can be implemented via a convolution
operation with filters of size 1×1. Therefore, each LBC layer
consists of two convolutional layers, where the weights in the
first convolutional layer are fixed and non-learnable while
the weights in the second convolutional layer are learnable.

The number of learnable parameters in the LBC layer
(with the 1 × 1 convolutions) are significantly less than
those of a standard convolutional layer for the same size
of the convolutional kernel and number of input and output
channels. Let the number of input and output channels be
p and q respectively. With a convolutional kernel of size of
h×w, a standard convolutional layer consists of p · h ·w · q
learnable parameters. The corresponding LBC layer consists
of p · h ·w ·m fixed weights and m · q learnable parameters
(corresponding to the 1 × 1 convolution), where m is the
number of intermediate channels of the LBC layer, which is
essentially the number of LBC filters. The 1×1 convolutions
act on the m activation maps of the fixed filters to generate
the q-channel output. The ratio of the number of parameters
in CNN and LBC is:

param. in CNN
param. in LBCNN

=
p · h · w · q
m · q =

p · h · w
m

For simplicity, assuming p = m reduces the ratio to h · w.

2In this paper we assume convolutional filters do not have bias terms.

xl xl+1

Wl

xl xl+1
Vl

CNN Module

LBCNN Module

Figure 3: Basic module in CNN and LBCNN.Wl and Vl are the learnable weights for each module.

Therefore, numerically, LBCNN saves at least 9×, 25×,
49×, 81×, 121×, and 169× parameters during learning for
3×3, 5×5, 7×7, 9×9, 11×11, and 13×13 convolutional
filters respectively.

3.2. Learning with LBC Layers

Training a network end-to-end with LBC layers instead
of standard convolutional layers is straightforward. The gra-
dients can be back propagated through the anchor weights
of the LBC layer in much the same way as they can be back
propagated through the learnable linear weights. This is simi-
lar to propagating gradients through layers without learnable
parameters (e.g., ReLU, Max Pooling etc.). However during
learning, only the learnable 1× 1 filters are updated while
the anchor weights remain unaffected. The anchor weights
of size p× h× w ×m (assuming a total of m intermediate
channels) in LBC can be generated either deterministically
(as practiced in LBP) or stochastically. We use the latter for
our experiments. Specifically, we first determine a sparsity
level, in terms of percentage of the weights that can bear
non-zero values, and then randomly assign 1 or -1 to these
weights with equal probability (Bernoulli distribution). This
procedure is a generalization of the weights in a traditional
LBP since we allow multiple neighbors to be compared
to multiple pivots, similar to the 3D LBP formulation for
spatial-temporal applications [27]. Figure 4 shows a pic-
torial depiction of the weights generated by our stochastic
process for increasing (left to right) levels of sparsity3. Our
stochastic LBC weight generation process allows for more
diversified filters at each layer while providing a fine grained
control over the sparsity of the weights.

3In our paper, sparsity level refers to the percentage of non-zero elements
i.e., sparsity=100% corresponds to a dense weight tensor.

Figure 4: (L-R) Increasing sparsity level (2-sparse, 4-sparse, and 9-sparse)
in the LBC filters. Pink locations bear value 1 and black locations -1. Green
locations are 0. Sparsity refers to the number of non-zero elements.

3.3. Theoretical Analysis

We now theoretically analyze the similarity, i.e., approxi-
mation quality, between the LBC layer and a standard convo-
lutional layer followed by a ReLU non-linearity. We derive
an upper bound on the approximation error of the LBC layer.

At layer l, let x ∈ R(p·h·w)×1 be a vectorized single patch
from the p-channel input maps, where h andw are the spatial
sizes of the convolutional filter. Let w ∈ R(p·h·w)×1 be a
vectorized single convolution filter from the convolutional
filter banks W ∈ Rp×h×w×m with m learnable filters at
layer l. We drop the layer subscription l for brevity.

In a standard CNN, this patch x is projected onto the
filter w, followed by the non-linear activation resulting in
the output feature value d. Each value of the output feature
map is a direct result of convolving the input map x with
a convolutional filter w. This microscopic process can be
expressed as:

d = σrelu(w
>x) (2)

The corresponding output feature map value for the pro-
posed LBC layer is a linear combination of multiple elements
from the intermediate bit maps (implemented as 1×1 convo-
lution). Each slice of this bit map is obtained by convolving
the input map x with a set of m pre-defined and fixed con-
volutional filters B ∈ Rm×p×h×w, followed by a non-linear
activation. The corresponding output feature map value d′

for LBCNN is obtained by linearly combining the m in-
termediate bit maps via convolution with m convolutional

filters with parameters: v1, v2, . . . , vm of size 1 × 1. This
entire process can be expressed as:

d′ = σsigmoid(Bx︸︷︷︸
m×1

)> v︸︷︷︸
m×1

= c>sigmoidv (3)

where B is now a 2D matrix of size m × (p · h · w) with
m filters stacked as rows, with a slight abuse of notation.
v = [v1, . . . , vm]> ∈ Rm×1. The ReLU activation in
Eq. 2 constraints the range of output, i.e., d ≥ 0. Eq.
3 also places similar constraints on the output value i.e.,
csigmoid = σsigmoid(Bx) ∈ (0, 1), due to the sigmoid ac-
tivation. Therefore, one can always obtain a v such that
c>sigmoidv = d′ = d.

However, choosing ReLU as the LBC’s activation func-
tion induces the following expression:

d′ = σrelu(Bx)>v = c>reluv (4)
We consider two cases (i) d = 0: since crelu = σrelu(Bx) ≥
0, a vector v ∈ Rm×1 always exists such that d′ = d. How-
ever, when (ii) d > 0: it is obvious that the approximation
does not hold when crelu = 0. Next we will show the con-
ditions (Theorem 3.5) under which crelu > 0 to ensure that
the approximation d′ ≈ d holds.

Definition 3.1 (subgaussian random variable). A random
variable X is called subgaussian if there exist constants β,
κ > 0, such that P(|X| ≥ t) ≤ βe−κt2 for all t > 0.

Lemma 3.1. Let X be a subgaussian random variable with
E[X] = 0, then there exists a constant c that only depends
on β and κ > 0 such that E[exp(θX)] ≤ exp(cθ2) for
all θ ∈ R. Conversely, if the above inequality holds, then
E[X] = 0 and X is subgaussian with parameters β = 2 and
κ = 1/(4c).

Definition 3.2 (isotropic random vector). Let ε be a random
vector on RN . If E[|〈ε,x〉|2] = ‖x‖22 for all x ∈ RN , then
ε is called an isotropic random vector.

Definition 3.3 (subgaussian random vector). Let ε be a ran-
dom vector on RN . If for all x ∈ RN with ‖x‖2 = 1,
the random variable 〈ε,x〉 is subgaussian with subgaussian
parameter c being independent of x, that is

E[exp(θ〈ε,x〉)] ≤ exp(cθ2), for all θ ∈ R, ‖x‖ = 1 (5)
then ε is called a subgaussian random vector.

Lemma 3.2. Bernoulli random matrices are subgaussian
matrices.

Lemma 3.3. Bernoulli random vectors are isotropic.

Lemma 3.4. Let B be an m × N random matrix with in-
dependent, isotropic, and subgaussian rows with the same
subgaussian parameter c in (5). Then, for all x ∈ RN and
every t ∈ (0, 1),

P
(∣∣∣∣ 1m‖Bx‖22 − ‖x‖22

∣∣∣∣ ≥ t‖x‖22) ≤ 2 exp(−c̃t2m) (6)

where c̃ only depends on c.

Theorem 3.5. Let B ∈ Rm×N be a Bernoulli random
matrix with the same subgaussian parameter c in (5), and
x ∈ RN be a fixed vector and ‖x‖2 > 0, with N = p · h ·w.
Let ξ = Bx ∈ Rm. Then, for all t ∈ (0, 1), there exists a
matrix B and an index i ∈ [m] such that

P

ξi ≥√(1− t)‖x‖2︸ ︷︷ ︸
>0

 ≥ 1− 2 exp(−c̃t2m) (7)

Theorem 3.5 shows that with high probability, elements in
the ξ = Bx vector are greater than zero, which ensures that
for the case when d > 0 under ReLU activation, there is a
vector v such that d ≈ d′ with high probability.

This analysis is valid for a single image patch that is
convolved with CNN and LBCNN filters. We now consider
a relaxed scenario with a total of τ patches per image. The
output feature map for the image is a τ dimensional vector
d ∈ Rτ with each element di, i ∈ [τ] being the scalar output
for i-th patch in the CNN. Similarly, for LBCNN the output
feature map is a vector d′ = C>reluv, where Crelu ∈ Rm×τ
and each column in Crelu corresponds to the m bit maps
from each of the τ image patches. Observe that vector v
is now shared across all the τ image patches i.e., the τ
columns in Crelu to approximate d. When τ ≤ m, a vector
v can be solved for such that d′ = C>reluv. However, when
τ > m, the problem reduces to an over-determined system
of linear equations and a least-square error solution ṽ is
given by ṽ = (CC>)−1Cd′, such that d′ ≈ C>reluṽ. This
analysis suggests that using a larger number of intermediate
filters m can result in a better approximation of the standard
convolutional layer.

Empirically we can measure how far d′ is from d
by measuring the normalized mean square error (NMSE):
‖d′ − d‖22/‖d‖22. We take the entire 50,000 32 × 32 im-
ages from CIFAR-10 training set and measure the NMSE,
as shown in Figure 6 (L). For the CNN, dense real-valued
filters are independently generated as Gaussian random fil-
ters, for each individual image. For the LBCNN, the sparse
LBC filters are also independently generated for each in-
dividual image. Experiments are repeated for 10 levels of
sparsity (10%, 20%, . . . , 100%) and 3 choices of number of
intermediate channels, 64, 128 and 512. We can see that the
approximation is better using more filters, and with higher
sparsity, with the exception of sparsity being 100%. We
conjecture that this may be due to that fact that d is actually
sparse, due to ReLU activation, and therefore enforcing no
sparsity constraints on the LBC filters B actually makes the
approximation harder.

4. Experimental Results
We will evaluate the efficacy of the proposed LBC layer

and compare its performance to a standard convolutional
layer on several datasets, both small scale and large scale.

Datasets: We consider classification tasks on four different
visual datasets, MNIST, SVHN, CIFAR-10, and ILSVRC-
2012 ImageNet classification challenge. The MNIST [22]
dataset is composed of a training set of 60K and a testing
set of 10K 32× 32 gray-scale images of hand-written digits
from 0 to 9. SVHN [24] is also a widely used dataset for
classifying digits, house number digits from street view im-
ages in this case. It consists of a training set of 604K and
a testing set of 26K 32 × 32 color images showing house
number digits. CIFAR-10 [20] is an image classification
dataset containing a training set of 50K and a testing set of
10K 32× 32 color images across the following 10 classes:
airplanes, automobiles, birds, cats, deers, dogs, frogs, horses,
ships, and trucks. The ImageNet ILSVRC-2012 classifica-
tion dataset [29] consists of 1000 classes, with 1.28 million
images for training and 50K images for validation. We first
consider a subset of this dataset. We randomly selected 100
classes with the largest number of images (1300 training
images in each class, for a total of 130K training images and
5K testing images.), and report top-1 accuracy on this subset.
Full ImageNet experimental results are also reported in the
subsequent section.

Implementation Details: Conceptually LBCNN can be eas-
ily implemented in any existing deep learning framework.
Since the convolutional weights are fixed, we do not have to
compute the gradients nor update the weights. This leads to
savings both from a computational point of view and mem-
ory as well. Furthermore, since the weights are binary the
convolution operation can be performed purely through ad-
ditions and subtractions. We base the model architectures
we evaluate in this paper on ResNet [13], with default 3× 3
filter size. Our basic module is the LBC module shown in
Figure 3 along with an identity connection as in ResNet. We
experiment with different numbers of LBC units, 10, 20 and
75, which is equivalent to 20, 40, and 150 convolutional
layers. For LBCNN the convolutional weights are generated
following the procedure described in Section 3.2. We use
512 randomly generated anchor weights, with a sparsity of
0.1, 0.5 or 0.9, for all of our experiments. Spatial average
pooling is adopted after the convolution layers to reduce the
spatial dimensions of the image to 6× 6. We use a learning
rate of 1e-3 and adopt the learning rate decay schedule from
[13]. We use ReLU instead of sigmoid as our non-linear
function for computational efficiency and faster convergence.
An important and practical consideration is to avoid using
a ReLU activation just prior to the LBC layer. This is to
ensure that there is no irrecoverable loss of information due
to the sparsity in both the input (due to ReLU activation) and
the convolutional weights.

Baselines: To ensure a fair comparison and to quantify the
exact empirical difference between our LBCNN approach
and a traditional CNN, we use the exact same architecture
for both the networks, albeit with sparse, binary and fixed

q 16 32 64 128 192 256 384 512

LBCNN 82.74 85.57 88.18 90.70 91.58 92.13 92.96 92.09
LBCNN-share 82.70 85.26 87.85 90.26 91.37 91.72 92.91 91.83

Baseline 84.13 86.30 88.77 90.86 91.69 92.15 92.93 91.87

Table 1: Classification accuracy (%) on CIFAR-10 with 20 convolution
layers and 512 LBC filters on LBCNN, LBCNN-share, and CNN baseline.

Epoch
0 20 40 60 80 100

A
cc

ur
ac

y

30

40

50

60

70

80

90

100

LBCNN train accuracy
LBCNN test accuracy
LBCNN-share train accuracy
LBCNN-share test accuracy

0 10 20 30 40 50 60

Epoch

0

10

20

30

40

50

60

A
cc

ur
ac

y
(%

)

2

2.5

3

3.5

4

4.5

5

Lo
ss

AlexNet (accuracy)
LBCNN (accuracy)
AlexNet (loss)
LBCNN (loss)

Figure 5: (L) Accuracy of the best performing LBCNN and LBCNN-share
on CIFAR-10. (R) Accuracy and loss on full ImageNet classification.

weights in LBCNN and dense learnable weights for CNN.
We also use the exact same data and hyper-parameters in
terms of the number of convolutional filters, initial learning
rate and the learning rate schedule. Consequently in these
experiments with 3× 3 convolutional kernels, LBCNN has
10× fewer learnable parameters (the baseline CNN also
includes a 1× 1 convolutional layer).
Results on MNIST, SVHN, and CIFAR-10: Table 1 com-
pares the accuracy achieved by LBCNN, LBCNN with
shared convolutional weights and the corresponding net-
work with a regular convolutional layer on the CIFAR-10
dataset. Note that with a fixed number of convolutional lay-
ers, number of input and output channels, performance of
the networks increases with an increase in the number of
output channels q. Significantly, LBCNN with 10× fewer
parameters performs as well as the corresponding CNN.

Table 2 consolidates the images classification results from
our experiments on various datasets. The best performing
LBCNNs are compared to their corresponding CNN baseline,
as well as to state-of-the-art methods such as BinaryCon-
nect [6], Binarized Neural Networks (BNN) [5], ResNet
[12], Maxout Network [9], Network in Network (NIN) [23].
For each dataset under consideration the best performing
LBCNN models are:

• MNIST: 150 convolutional layers (75 LBCNN mod-
ules), 512 LBC filters, 16 output channels, 0.5 sparsity,
128 hidden units in the fully connected layer.

• SVHN: 80 convolutional layers (40 LBCNN modules),
512 LBC filters, 16 output channels, 0.9 sparsity, 512
hidden units in the fully connected layer.

• CIFAR-10: 100 convolutional layers (50 LBCNN mod-
ules), 512 LBC filters, 384 output channels, 0.1 sparsity,
512 hidden units in the fully connected layer.

LBCNN Baseline BinaryConnect [6] BNN [5, 14] ResNet [12] Maxout [9] NIN [23]

MNIST 99.51 99.48 98.99 98.60 / 99.55 99.53
SVHN 94.50 95.21 97.85 97.49 / 97.53 97.65

CIFAR-10 92.99 (93.66 NetEverest) 92.95 91.73 89.85 93.57 90.65 91.19

Table 2: Classification accuracy (%). LBCNN column only shows the best performing model and the Baseline column shows the particular CNN counterpart.

LBC Filter Size 3×3 5×5 7×7 9×9 11×11 13×13

LBCNN 62.56 62.29 62.80 63.24 63.08 62.43
Baseline 65.74 64.90 66.53 65.91 65.22 64.94

Table 3: Classification accuracy (%) on 100-class ImageNet with varying
LBC filter sizes.

LBCNN with Shared Weights: We consider a scenario
where all the LBC layers in the network share the same set
of convolutional weights, as opposed to randomly generating
new convolutional weights at each layer. For a network with
D LBC layers sharing the convolutional weights across the
layers results in a model size that is roughly smaller by a
factor of D. As can be seen from the second row in Table 1
and in Figure 5 (L), the performance of the network with
weight sharing is comparable to a network without weight
sharing. This experiment demonstrates the practicality of
using a LBCNN on memory constrained embedded systems.
NetEverest: With at least 9× parameter reduction, one can
now train much deeper networks, going roughly from 100 to
1000 layers, or from 1000 to 10000 layers. The LBC module
allows us to train extremely deep CNN efficiently with 8848
convolutional layers (4424 LBC modules), dubbed NetEver-
est, using a single nVidia Titan X GPU. The architecture of
NetEverest: 8848 convolutional layers (4424 LBC modules),
32 LBC filters, 32 output channels, 0.1 sparsity, 512 hidden
units in the fully connected layer. This network achieves the
highest accuracy on CIFAR-10 among our experiments as
shown in Table 2.
Results on 100-Class ImageNet Subset: We report the top-
1 accuracy on a 100-Class subset of ImageNet 2012 clas-
sification challenge dataset in Table 3. The input images
of ImageNet are of a much higher resolution than those in
MNIST, SVHN, and CIFAR-10, allowing us to experiments
with the different LBC filter sizes. Both LBCNN and our
baseline CNN share the same architecture: 48 convolutional
layers (24 LBC modules), 512 LBC filters, 512 output chan-
nels, 0.9 sparsity, 4096 hidden units in the fully connected
layer.
Results on Full ImageNet: We train a LBCNN version of
the AlexNet [21] architecture on the full ImageNet classi-
fication dataset. The AlexNet architecture is comprised of
five consecutive convolutional layers, and two fully con-
nected layers, mapping the image (224 × 224 × 3) to a
1000-dimension feature representation for classification. The
number of convolutional filters used and their spatial sizes
are tabulated in Table 4. For this experiment, we create a
LBCNN version of the AlexNet architecture by replacing

Layers AlexNet [21] LBCNN (AlexNet)

Layer 1 96× (11× 11× 3) = 34, 848 96× 256 = 24, 576
Layer 2 256× (5× 5× 48) = 307, 200 256× 256 = 65, 536
Layer 3 384× (3× 3× 256) = 884, 736 384× 256 = 98, 304
Layer 4 384× (3× 3× 192) = 663, 552 384× 256 = 98, 304
Layer 5 256× (3× 3× 192) = 442, 368 256× 256 = 65, 536

Total 2, 332, 704 (∼ 2.33M) 352, 256 (∼ 0.352M)

Table 4: Comparison of the number of learnable parameters in convolu-
tional layers in AlexNet and AlexNet with LBCNN modules. The proposed
method saves 6.622× learnable parameters in the convolutional layers.

LBCNN AlexNet (ours) AlexNet (BLVC) [1]

ImageNet 54.9454 56.7821 56.9

Table 5: Classification accuracy (%) on full ImageNet.

Sparsity (%)
0 20 40 60 80 100

N
M

SE
 (%

)

0

2

4

6

8

10

12

14

16

18

64 LBC Filters
128 LBC Filters
512 LBC Filters

Layer
1 2 3 4 5

N
or

m
al

iz
ed

 C
or

re
la

tio
n

M
ea

su
re

0.91

0.92

0.93

0.94

0.95

0.96

0.97

LBCNN Weights
CNN Weights

Figure 6: (L) NMSE between d′ and d with increasing levels of sparsity
within the LBC filters. (R) Normalized correlation measure for LBCNN
and CNN filters. The smaller the value, the more de-correlated they are.

each convolutional layer in AlexNet with a LBC layer with
the same number input and output channels and size of filter.
Table 4 compares the number of learnable parameters in con-
volutional layers in both AlexNet and its LBCNN version
by setting the number of output channels to q = 256. As
can be seen, LBCNN acheives a 6.622× reduction in the
number of learnable parameters in the convolutional layers
while performing comparably to AlexNet (see Table 5). The
progression in the validation accuracy and training loss of
AlexNet and its corresponding LBCNN version set for 55
epochs is shown in Figure 5.

5. Discussion

We now discuss some computational and statistical advan-
tages afforded by the proposed local binary convolution layer
over a regular convolutional layer.

Computational: The parametrization of the LBC layer re-
duces the number of learnable parameters by a factor of 9×
to 169× during training and inference. Furthermore, the
sparse and binary nature of the convolutional weights fur-

Epoch
0 50 100 150 200 250 300 350

A
cc

ur
ac

y

10

20

30

40

50

60

70

80

90

100

LBCNN train accuracy
LBCNN test accuracy
CNN train accuracy
CNN test accuracy

Epoch
0 50 100 150

A
cc

ur
ac

y
10

20

30

40

50

60

70

80

90

100

LBCNN train accuracy
LBCNN test accuracy
CNN train accuracy
CNN test accuracy

Epoch
0 50 100 150

A
cc

ur
ac

y

0

10

20

30

40

50

60

70

80

90

100

LBCNN train accuracy
LBCNN test accuracy
CNN train accuracy
CNN test accuracy

Epoch
0 50 100 150

A
cc

ur
ac

y

0

10

20

30

40

50

60

70

80

90

100

LBCNN train accuracy
LBCNN test accuracy
CNN train accuracy
CNN test accuracy

Figure 7: (L1) Results on overfitting experiments. (R3) Results on the FRGC 10-class, 50-class, and 100-class experiments respectively.

ther reduces the computational complexity and memory and
space requirements both during training and inference. The
lower memory requirements enables learning of much deep
neural networks thereby allowing better representations to
be learned through deeper architectures [30, 12, 13]. Fur-
thermore, sharing the convolutional weights across all the
LBC layers, leads to further reduction in memory require-
ments thereby enabling learning of deep CNNs on resource
constrained embedded systems.

Statistical: LBCNN, being a simpler model with fewer
learnable parameters compared to a CNN, can effectively
regularize the learning process and prevent over-fitting. High
capacity models such as deep CNNs with a regular convo-
lutional layer typically consists of a very large number of
parameters. Methods such as Dropout [32], DropConnect
[34], and Maxout [9] have been introduced to regularize the
fully connected layers of a network during training to avoid
over-fitting. As opposed to regularizing the fully connected
layers [32, 34, 4] of a network, LBCNN directly regularizes
the convolutional layers, which is also important as discussed
in [32, 3].

Network regularization techniques such as Dropout [32]
and Batch Normalization [16] prevent co-adaptation of neu-
ron activations and reduce internal co-variate shift. Re-
cently Cogswell et al. [4] propose a method to explicitly de-
correlate and minimize the cross-covariance of hidden activa-
tions, to improve performance and prevent over-fitting. It en-
courages diverse or non-redundant representations. LBCNN
naturally provides de-correlation for the activations since the
convolutional filters are randomly generated sparse Bernoulli
filters. Figure 6 (R) shows the amount of normalized corre-
lation (‖Σ‖2F − ‖diag(Σ)‖22)/‖Σ‖2F in both LBCNN and
CNN filters for the first 5 layers of the best-performing ar-
chitecture on CIFAR-10 described in Section 4. Smaller
values of the normalized correlation correspond to greater
de-correlation between the activations.

Sample Complexity: The lower model complexity of
LBCNN makes them an attractive option for learning with
low sample complexity. To demonstrate the statistical effi-
ciency of LBCNN we perform an experiment on a subset of

the CIFAR-10 dataset. The training subset randomly picks
25% images (5000 × 0.25 = 1250) per class while keep-
ing the testing set intact. We choose the best-performing
architecture on CIFAR-10 described in Section 4 for both
the CNN and LBCNN. The results shown in Figure 7 (L1)
demonstrates that LBCNN trains faster and is less prone to
over-fitting on the training data. To provide an extended
evaluation, we perform additional face recognition on the
FRGC v2.0 dataset [26] experiments under a limited sample
complexity setting. The number of images in each class
ranges from 6 to 132 (51.6 on average). While there are
466 classes in total, we experiment with increasing number
of randomly selected classes (10, 50 and 100) with a 60-40
train/test split. Across the number of classes, our network
parameters remain the same except for the classification
fully connected layer at the end. We make a few observa-
tions from our findings (see Figure 7 (R3)): (1) LBCNN
converges faster than CNN, especially on small datasets and
(2) LBCNN outperforms CNN on this task. Lower model
complexity helps LBCNN prevent over-fitting especially on
small to medium-sized datasets.

6. Conclusions
Motivated by traditional local binary patterns, in this

paper, we proposed local binary convolution (LBC) layer as
an alternative to the convolutional layers in standard CNN.
The LBC layer comprises of a set of sparse, binary and
randomly generated set of convolutional weights that are
fixed and a set of learnable linear weights. We demonstrate,
both theoretically and empirically, that the LBC module is a
good approximation of a standard convolutional layer while
also resulting in a significant reduction in the number of
parameters to be learned at training, 9× to 169× for 3× 3
and 13 × 13 sized filters respectively. CNNs with LBC
layers are well suited for low sample complexity learning of
deep CNNs in resource constrained environments due their
low model and computational complexity. The proposed
LBCNN demonstrates excellent performance and performs
as well as standard CNNs on multiple small and large scale
datasets across different network architectures.

References
[1] Berkeley Vision and Learning Center (BLVC). BVLC

AlexNet Accuracy on ImageNet 2012 Validation Set.
https://github.com/BVLC/caffe/wiki/Models-accuracy-on-
ImageNet-2012-val, 2015. 7

[2] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and
Y. Chen. Compressing Neural Networks with the Hashing
Trick. In 32nd International Conference on Machine Learn-
ing (ICML), 2015. 2

[3] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and Ac-
curate Deep Network Learning by Exponential Linear Units
(ELUs). In International Conference on Learning Represen-
tations (ICLR), 2016. 8

[4] M. Cogswell, F. Ahmed, R. Girshick, L. Zitnick, and D. Batra.
Reducing Overfitting in Deep Networks by Decorrelating
Representations. In International Conference on Learning
Representations (ICLR), 2016. 8

[5] M. Courbariaux and Y. Bengio. BinaryNet: Training Deep
Neural Networks with Weights and Activations Constrained
to +1 or -1. arXiv preprint arXiv:1602.02830, 2016. 1, 2, 6, 7

[6] M. Courbariaux, Y. Bengio, and J.-P. David. BinaryConnect:
Training Deep Neural Networks with binary weights during
propagations. In Advances in Neural Information Processing
Systems (NIPS), pages 3105–3113, 2015. 1, 2, 6, 7

[7] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. de Freitas.
Predicting Parameters in Deep Learning. In Advances in
Neural Information Processing Systems (NIPS), pages 2148–
2156, 2013. 2

[8] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S.
Modha. Backpropagation for Energy-efficient Neuromorphic
Computing. In Advances in Neural Information Processing
Systems (NIPS), pages 1117–1125, 2015. 2

[9] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville,
and Y. Bengio. Maxout Networks. In 30th International
Conference on Machine Learning (ICML), 2013. 6, 7, 8

[10] S. Han, H. Mao, and W. J. Dally. Deep Compression: Com-
pressing Deep Neural Networks with Pruning, Trained Quan-
tization and Huffman Coding. In International Conference
on Learning Representations (ICLR), 2016. 2

[11] S. Han, J. Pool, J. Tran, and W. Dally. Learning both Weights
and Connections for Efficient Neural Network. In Advances in
Neural Information Processing Systems (NIPS), pages 1135–
1143, 2015. 2

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning
for Image Recognition. In IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR), pages
770–778, 2016. 1, 6, 7, 8

[13] K. He, X. Zhang, S. Ren, and J. Sun. Identity Mappings
in Deep Residual Networks. In European Conference on
Computer Vision (ECCV), pages 630–645, 2016. 1, 6, 8

[14] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and
Y. Bengio. Quantized neural networks: Training neural net-
works with low precision weights and activations. arXiv
preprint arXiv:1609.07061, 2016. 2, 7

[15] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J.
Dally, and K. Keutzer. SqueezeNet: AlexNet-level Accuracy

with 50x Fewer Parameters and <1MB Model Size. arXiv
preprint arXiv:1602.07360, 2016. 2

[16] S. Ioffe and C. Szegedy. Batch Normalization: Accelerat-
ing Deep Network Training by Reducing Internal Covariate
Shift. In 32nd International Conference on Machine Learning
(ICML), 2015. 8

[17] F. Juefei-Xu, K. Luu, and M. Savvides. Spartans: Single-
sample Periocular-based Alignment-robust Recognition Tech-
nique Applied to Non-frontal Scenarios. IEEE Trans. on
Image Processing, 24(12):4780–4795, Dec 2015. 2

[18] F. Juefei-Xu and M. Savvides. Subspace-Based Discrete
Transform Encoded Local Binary Patterns Representations
for Robust Periocular Matching on NIST’s Face Recogni-
tion Grand Challenge. IEEE Trans. on Image Processing,
23(8):3490–3505, Aug 2014. 2

[19] F. Juefei-Xu and M. Savvides. Learning to Invert Local Binary
Patterns. In 27th British Machine Vision Conference (BMVC),
Sept 2016. 2

[20] A. Krizhevsky and G. Hinton. Learning Multiple Layers of
Features from Tiny Images. 2009. 6

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. In
Advances in Neural Information Processing Systems (NIPS),
pages 1097–1105, 2012. 1, 7

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based Learning Applied to Document Recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998. 6

[23] M. Lin, Q. Chen, and S. Yan. Network in Network. In In-
ternational Conference on Learning Representations (ICLR),
2014. 6, 7

[24] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.
Ng. Reading Digits in Natural Images with Unsupervised
Feature Learning. In NIPS Workshop on Deep Learning and
Unsupervised Feature Learning, 2011. 6

[25] T. Ojala, M. Pietikäinen, and D. Harwood. A Comparative
Study of Texture Measures with Classification Based on Fea-
tured Distributions. Pattern Recognition, 29(1):51–59, 1996.
2

[26] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang,
K. Hoffman, J. Marques, J. Min, and W. Worek. Overview
of the Face Recognition Grand Challenge. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
volume 1, pages 947–954, 2005. 8

[27] M. Pietikäinen, A. Hadid, G. Zhao, and T. Ahonen. Computer
Vision Using Local Binary Patterns. Springer, 2011. 2, 4

[28] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-
Net: ImageNet Classification Using Binary Convolutional
Neural Networks. In European Conference on Computer
Vision (ECCV), pages 525–542, 2016. 1, 2

[29] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Im-
ageNet Large Scale Visual Recognition Challenge. Interna-
tional Journal of Computer Vision (IJCV), 115(3):211–252,
2015. 6

[30] K. Simonyan and A. Zisserman. Very Deep Convolutional
Networks for Large-scale Image Recognition. In Interna-
tional Conference on Learning Representations (ICLR), 2015.
1, 8

[31] D. Soudry, I. Hubara, and R. Meir. Expectation Backpropaga-
tion: Parameter-free Training of Multilayer Neural Networks
with Continuous or Discrete Weights. In Advances in Neu-
ral Information Processing Systems (NIPS), pages 963–971,
2014. 2

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A Simple Way to Prevent Neural
Networks from Overfitting. The Journal of Machine Learning
Research (JMLR), 15(1):1929–1958, 2014. 8

[33] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going Deeper
with Convolutions. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1–9, 2015. 1

[34] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. Regu-
larization of Neural Networks Using Dropconnect. In 30th In-
ternational Conference on Machine Learning (ICML), pages
1058–1066, 2013. 8

[35] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized
Convolutional Neural Networks for Mobile Devices. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016. 2

