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ABSTRACT
Correlation filters (CFs) are a well-known pattern classifica-
tion approach used in biometrics. A CF is a spatial-frequency
array that is specifically synthesized from a set of training
patterns to produce a sharp correlation output peak at the lo-
cation of the best match for an authentic image comparison
and no such peak for an impostor image comparison. The
underlying premise when using CFs is that this correlation
output peak behavior on training data ideally extends to test-
ing data. Yetin 1 : 1 verification scenarios, where there is
limited training data available to represent pattern distortions,
the correlation output from an authentic comparison can be
difficult to discern from the correlation output from an im-
postor. In this paper we introduce Stacked Correlation Filters
(SCFs), a simple and powerful approach to address this prob-
lem by training an additional set of classifiers which learn to
differentiate correlation outputs from authentic and impostor
match pairs. This is done by training a series of stacked mod-
ular CFs with each layer refining the output of the previous
layer. Our basic premise is that since correlation outputs have
an expected shape, an additional CF can be trained to rec-
ognize such shape and refine the final output. As previous
works with CFs have only focused on individual filter design
or application, which assumes the CF to provide a sharp peak,
this is a new CF paradigm that can benefit many existing CF
designs and applications.
1. INTRODUCTION

A correlation filter (CF) is a spatial-frequency array (equiva-
lently, a template in the image domain) designed from a set of
training patterns to discriminate between similar (authentic)
and non-similar (impostor) match pairs. The CF design goal
is to produce a correlation output displaying a sharp peak at
the location of the best match from an authentic comparison
and no such peak for an impostor comparison. As traditional
design and usage focuses on the correlation outputs where
(after the peak height and/or location are extracted) the re-
mainder of the correlation shape is discarded. In this paper,
we demonstrate a novel technique for improving the effec-
tiveness of CFs by using the insight that the expected shape
of a correlation output can be recognized. Moreover, the pro-
cess of identifying an authentic correlation shape can be used
to refine the correlation outputs after the initial matching for
improved discrimination.
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Fig. 1: Example correlation outputs when comparing a
gallery template to several different probe images. A less dis-
cernible correlation output is obtained under difficult match
scenarios while a good output (sharp peak at the location of
best match) is obtained from the pair with few difficulties.

There are a large number of CFs that have been developed
[1,2,3,4,5] for image matching problems and have been pre-
viously shown to perform well in biometric recognition sce-
narios like face [6], iris [7], periocular [8], fingerprint [9], and
palm print [10]. However, the matching challenge is notice-
ably more difficult when only a single image is available for
the gallery template, e.g., as in real-world applications (such
as when matching crime-scene face images to face images in
surveillance videos) and in several NIST biometric competi-
tions [11, 12, 13] designed to mimic such real world scenar-
ios. CFs can implicitly and efficiently leverage shifted ver-
sions of an image as negative training samples. Therefore CFs
are better suited for the 1 : 1 matching problem in comparison
to other classifiers like Support Vector Machines (SVMs) and
Random Forests which are designed to discriminate between
two or more classes. However, in challenging matching sce-
narios (e.g., due to the presence of in-plane deformations, oc-
clusions, etc.) an authentic correlation output may be difficult
to discern from an impostor correlation output as shown in
Fig. 1. The failure occurs due to a lack of training data and/or
discriminative content between the probe and gallery. This
problem is not new or unique to biometrics, and usual efforts
to address it include varying features, changing the method
of recognizing a peak (e.g., peak-to-sidelobe ratio, peak-to-
correlation-energy, etc.), and filter design, e.g., the Extended
Maximum Average Correlation Height (EMACH) [14, 15].

We address this problem by proposing a new architecture
for 1 : 1 image matching referred to as Stacked Correlation
Filters (SCFs). This architecture consists of a series of se-
quential classifiers which are trained to discriminate between



During training, the correlation outputs of the previous
layer are used to build the stacked filters of the next layer
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Fig. 2: Stacked Correlation Filter (SCF) Overview. Operating
first on the outputs from an initial matching stage, additional
sets of CFs are consecutively layered with each set designed
to refine the previous layer’s output to the desired ideal output.

SCF implementationat layer 2

authentic and impostor correlation outputs for improved class

separation. Operating first on the outputs from an initial CF

(referred to as ‘layer 0’), additional sets of CFs are consecu-

tively layered with each set designed to refine the output from
the previous layer to the desired correlation output. What we
present is a simple and powerful technique that can be applied
iteratively to continuously improve results by simplifying the
matching process to a series of sequential predictions (see Fig.

2). As previous works with CFs have only focused on indi-

vidual filter design or application, this is a new paradigm in

CF research (SCFs can be applied to all types of CF designs).

The use of sequential predictions (feeding the output of

predictors from a previous stage to the next) has been revis-
ited many times in the literature. In [16, 17] sequential pre-
diction is applied to natural language processing tasks, while
in [18] a face detection system was developed consisting of a
cascaded series of classifiers. More recently the inference ma-
chines architecture [19, 20] was proposed that reduces struc-
tured prediction tasks, traditionally solved using probabilistic
graphical models, to a sequence of simple machine learning
sub-problems. Within biometrics, sequential predictions have
been applied to perform score fusion [21, 22]. SCFs operate
on a similar intuition (iteratively applying weak classifiers to
improve the final output), however offer a novel approach in
both biometric recognition as well as in CF application. To
the best of our knowledge, no one has:

1. Studied the application of an additional CF (or set) to re-
fine the initial correlation outputs.

2. Built an approach for shaping the correlation output by
use of an additional classifier.

3. Used sequential predictors on an individual match score
for biometric recognition. The SCF concept is not fusing
the outputs from several different classifiers/features.

We demonstrate the effectiveness of SCFs through extensive
experimentation on the Extended Yale B [23] facial database,
achieving substantial performance gains over a single CF.

2. STACKED CORRELATION FILTERS

Correlation filters (CFs) are well explained in previous publi-
cations [, 5, 8] and hence we provide only a brief summary.
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Fig. 3: Overview of each method for computing the refine-

ment to be added back to the previous layer’s outputs.

CFs are a class of classifiers which are generally designed for
high localization performance and can even be built with a
single training image. The correlation output from an authen-
tic probe image and gallery template should exhibit a peak at
the location of the best match and no such peak for an impos-
tor. Each gallery template is designed to achieve such behav-
ior on training data and this peak behavior is hypothesized to
extend to testing data from the same user.

The main idea behind CF design is to control the shape of
the correlation output between the training image and filter by
minimizing the mean square error (MSE) between the actual
and the desired correlation output for an authentic (or impos-
tor) input. Thus, conceptually, CFs are regressors which map
the image features to a specified output. Under very challeng-
ing conditions, a single CF may be insufficient to deal with the
wide range of variations in the image features (e.g., see Fig.
1). The intuition behind SCFs is to use a layered approach to
refine the correlation outputs from initial matching to provide
better discrimination between authentic and impostor pairs.
The ‘stack’ is built as a set of sequential CFs, the first layer is
applied to the output after correlating the image features (re-
ferred to as ‘layer 0’), and the subsequent layers are applied
to the refined outputs of the previous layer, as in Fig. 2.

2.1. Correlation Output Refinement

We train the SCFs using only the correlation outputs and
corresponding similarity/dis-similarity labels per match pair
from the previous layer. In the case where the image is di-
vided into multiple patches (e.g., Fig. 2), the SCF for the
next layer is designed as a multi-channel CF with the correla-
tion outputs of the patches (IV total) from the previous layer
constituting the ‘features’ for each channel (see [24] for more
details). Since correlation is linear, as in other multi-layer
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Fig. 4: Performance of the Combined (CR) and Individual (IR) refinement methods with each nonlinearity. For each patch
configuration (x-axis), each plot displays VR on the left y-axis (solid lines) and EER on the right y-axis (dashed lines). The
tables display the best results and illustrate numerically how aggressive refinement can quickly cause performance to diverge.
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Fig. 5: Example of how ‘hard impostors’ can negatively effect the SCF output. The shown impostor score distribution splits
into multiple modes, separating impostors by quality and causing the higher layers to perform poorly. The neighboring table
contains the fisher ratio (measuring the separation between the authentic and impostor distributions) at each layer.

classifiers, a nonlinear operation is implemented to separate
the layers (otherwise the ‘stack’ is equivalent to learning a
single filter and there would be no advantage to learning or
using a stack of CFs). In our design, we considered four non-
linear operations; peak correlation energy (PCE), hyperbolic
tangent (Tanh), sigmoid function (Sig), and the rectified lin-
ear unit (RLU), where the nonlinear operation is applied to
the output(s) of the SCFs when correlated with the previous
layer’s outputs. Recall that the purpose of the SCFs at each
layer is to refine the previous layer’s correlation output, to this
end; we developed two refinement methods (see Fig. 3):

¢ Combined Refinement (CR) - A nonlinear function, f,
is applied to summed SCF outputs (f(Z;.V:1 Cj)).

¢ Individual Refinement (IR) - A nonlinear function, f, is
applied to each SCF output (f(C;)) individually.

The refinements are added to the previous layer’s outputs.

2.2. Implementation

As we will show, achieving optimal performance by manu-
ally encoding a single layer or set of layers to a specific re-
finement method and nonlinearity is a non-trivial task. Thus,
during training we determine the best selection with cross-
validation, a procedure we designate as Dynamic Refinement
(DYN). The result allows the architecture to actively adjust to
the quality of the outputs of the previous layer.

Fig. 7: Sample images from the Yale face database.

We examine the various approaches to applying the SCFs
using the Extended Yale B face dataset [23]. Composed of
2414 frontal-face images from 38 subjects, the images capture
9 lighting directions and 64 illumination conditions for each
user (see Fig. 7). Traditionally the dataset is divided into
5 subsets, however for the presented experiments all of the
images were treated equally to eliminate any bias.

In the presented tests each refinement method and nonlin-
earity is evaluated in a 1 : 1 image-to-image matching sce-
nario using 5-fold cross validation. As a measure of over-
all system performance we report equal error rates (EERs)
and verification rates (VRs) at 0.001 False Acceptance Rate
(FAR) from the scores obtained by concatenating the asso-
ciated folds (excluding self-comparisons).' Finally, we pre-
process the images by a simple histogram normalization and
resize each to 128 x 128 pixels for computational efficiency.

Fig. 4 displays the resulting EERs (right y-axis, dashed
lines) and VRs (left y-axis, solid lines) from running three

IRank-1 identification rate is not included as it is always > 99%.
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Fig. 6: Distribution across nonlinearities (top row) and refinement methods (bottom row) used at each layer when searching
over each during cross-validation (referred to as Dynamic Refinement) for each patch configuration.

SCF layers over six patch configurations (non-overlapping
rectangular patches, e.g., Fig. 2 displays a 3x3 configura-
tion). Best results for CR (94.62% VR, 1.84% EER) are ob-
tained using the first layer of a 5x5 patch configuration and
RLU nonlinearity. The best results for IR are obtained using
the first (3.78% EER) and second layers (85.18% VR) of a
3 %3 patch configuration and Sig nonlinearity.

From the plots in Fig. 4 we notice that there isn’t a single
patch configuration or nonlinearity that consistently outper-
forms the others. Nonetheless, some relationships do emerge
when focusing on each method individually. For CR, employ-
ing more patches generally produces better performance. This
is because, by taking the sum of the set, patches with poor
performance can be strengthened by those with better perfor-
mance. Thus, adding patches will produce a larger response.
While IR requires fewer patches for better performance due
to relying on each patch to perform similarly (i.e., no specific
mechanism is in place for adjusting poor performing patches).

The experiments also revealed what we refer to as the ‘hard
impostor’ phenomenon. Fig. 5 displays an example in which
the impostor score distribution separates into multiple modes.
This occurs when a set of false peaks from impostor match
pairs are refined/sharpened similar to authentic comparisons.
Continuing to iterate with each layer only further perpetuates
the problem and pushes more impostor scores closer to the
authentic distribution (i.e., causing more false positives and
thereby decreasing the VR, but not necessarily affecting the
rank-1 identification rate since a large number of authentic
scores are well above the EER and VR score thresholds). This
is mitigated by cross-validating over refinement and nonlin-
earity for each layer.

Fig. 6 shows the distribution of nonlinearities and refine-
ments from searching over each during training, and Fig.
8 displays the corresponding performance. Best results are
obtained at the second layer of a 6x6 patch configuration
(92.11% VR, 2.52% EER). While the best overall perfor-
mance is achieved from CR, there is a significant improve-
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Fig. 8: Performance of the Dynamic Refinement (DYN).

ment of the stability of the model (across all patches) when
using DYN. Progress is no longer limited to the first or second
layer and then quickly degrading, instead it becomes more
gradual across several layers. Thus, rather than needing to
empirically test each refinement method and nonlinearity, we
can now largely ensure that improvement will occur as long
the two images are divided into patches for matching.’

Finally, by examining the histograms in Fig. 6 we note that
there is little correlation with regard to when one refinement
or nonlinearity is better than another. Rather, what stands out
is that the folds make similar choices, e.g., based on the ex-
periments it is unlikely that the nonlinearity implemented at
layer 2 of one fold will differ from that of another fold. How-
ever, we do notice that overall the Tanh and Sig operations are
very rarely used after the initial CFs (layer 0).

3. CONCLUSIONS

Correlation filters (CFs) are designed to specify a desired out-
put for authentic and impostor matches and are widely used
in many biometric applications. In this paper we presented
Stacked Correlation Filters (SCFs), a fundamentally new CF
paradigm where instead of a single CF, we use a cascaded
stack of filters to achieve the desired CF outputs. Exten-
sive experimentation demonstrates the effectiveness of SCFs,
achieving substantial performance gains over a single CF un-
der 1 : 1 image matching scenarios.

2Similar to CR, the DYN method works best with more patches.
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