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Abstract—The periocular region as a biometric
trait has recently gained considerable traction, es-
pecially under challenging scenarios where reliable
iris information is not available for human authenti-
cation. In this paper, we consider the problem of one-
to-one (1 : 1) matching of highly non-ideal periocular
images captured in-the-wild under unconstrained
imaging conditions. Such images exhibit consider-
able appearance variations including non-uniform
illumination variations, motion and defocus blur, off-
axis gaze, and non-stationary pattern deformations.
To address these challenges, we propose Periocular
Probabilistic Deformation Models (PPDMs) which,
1) reduce the image matching problem to matching
local image regions, and 2) approximate the perioc-
ular distortions by local patch level spatial transla-
tions whose relationships are modeled by a Gaussian
Markov Random Field (GMRF). Given a periocular
image pair, we determine the distortion-tolerant
similarity metric by regularizing local match scores
by the maximum a-posteriori probability (MAP)
estimate of the relative local deformations between
them. Unlike existing global periocular image match-
ing techniques, by accounting for local image defor-
mations in the periocular matching process PPDM
exhibits greater tolerance to pattern variations. We
demonstrate the effectiveness of our model via ex-
tensive evaluation on a large number of “in-the-wild”
periocular images. We find that PPDMs outperform
many benchmark 1 : 1 image matching techniques
(improving verification rates at 0.1% false accept
rate by ∼30% over previous work and ∼40% when
compared to the best baseline) in challenging sce-
narios leading to state-of-the-art verification perfor-
mance on multiple real-world periocular datasets.

I. Introduction

MATCHING images in the presence of image
distortion is an important task in many ap-

plications including biometrics [1], optical character
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Fig. 1. Example passport photos with flow vectors overlaid to
illustrate the deformation over the full face (top) and periocular
regions (bottom) due to changing expression. Note that the
different motion vectors in different regions of the face and bi-
ocular images are of different lengths and orientations with the
periocular region exhibiting less deformations compared to the
other parts of the face.

recognition (OCR) [2], image retrieval [3], and auto-
matic target recognition [4]. In biometric recognition,
iris recognition is very popular as it exhibits high
recognition rates in controlled settings. However, in
order to achieve the high levels of accuracy desired,
a high quality, non-occluded iris image is required. In
addition, any failure in segmentation of the iris from
the image (caused by specular reflections, eyelashes,
eye lids, non-frontal gaze, etc.) can significantly degrade
system performance. One way to try to alleviate these
issues is to use the entire periocular region.

Although a universally accepted definition of the
periocular region does not seem to exist, we define it as
the area of the face that includes the eyelids, eyelashes,
eyebrow, and the skin surrounding the eye. Periocu-
lar recognition has been shown to have an increased
resistance to the effects of aging [5], to be helpful in
recognition performance when fused with iris images
[6]–[8] and to be useful when fused with face images [9],
[10]. There is also evidence of the periocular recognition
outperforming iris and face recognition in challenging
environments [11]–[14]. Some work [5] has focused on
the bi-ocular region which includes both eyes within a
single image, however this work and many others use
the approach of splitting the left region from the right
region to perform matching separately on each of the
two periocular regions.

The periocular region does not undergo as much
deformation as the rest of the facial region (see Fig.
1) under ideal imaging conditions. However, under
challenging imaging conditions (such as subjects with
off-axis gaze, partial occlusion, cross-sensor matching,
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Fig. 2. System overview for determining a match. The probe, I, and gallery, G, images are each divided into non-overlapping patches
where the corresponding probe and gallery patches are compared via template matching. The outputs from template matching are
then used as inputs into a Gaussian Markov Random Field (GMRF) model that is trained to capture the relationship between the
deformations of the image patches for authentic matches. The final match score (M) is the sum of the marginal posterior probabilities.

(a) Scale variation

(b) Pose variation (rotation and position)

(c) Illumination variation
Fig. 3. These periocular regions are extracted from near infrared
(NIR) video sequences collected from moving subjects in an
unconstrained environment exhibiting variations in illumination,
scale, rotation, and position.

etc.), the periocular region exhibits significant pattern
deformation due to sensor noise, movement (pose and
scale change, Fig. 3a and 3b), illumination variations
(Fig. 3c), eye gaze variations, and occlusions. The image
matching challenge is noticeably exacerbated when only
a single image is available for the gallery template, as is
the case in several NIST biometric competitions [15]–
[17], where a 1 : N search is performed equivalently as
N one-to-one (1 : 1) comparisons. These evaluations are
designed to mimic real world scenarios where a database
sample (such as a passport or visa or driver’s license
image) is compared against an image of that person
captured in the field. Shown in Fig. 1 is an example
of two passport photos with flow vectors overlaid to
demonstrate variability (due to expression difference)
between a single gallery and a single probe image.
To properly match these images and others in 1 : 1
matching schemes, it is necessary to model and take
into account the distortion between similar patterns.

Variability or the distortions in the patterns due to
factors such as illumination, occlusion, facial expres-
sion changes (such as seen in Fig. 1), and/or possibly
other non-stationary deformations can be accounted for

partly by using robust pattern descriptors. Examples of
robust features include LBP [18], SIFT [19], GIST [20],
HOG [21], and others. However, in the presence of large
variability and/or poor image quality, the robustness
provided by just the pattern representations is usually
insufficient to achieve desirable error rates as shown in
[22] and [23]. A survey of techniques [24] indicates that
most of the methods use some combination of HOG,
SIFT, and LBP features for periocular matching.

Methods such as the Image Distortion Model (IDM)
[25] and SIFT-Flow [26] try to directly model the pat-
tern distortion process that occurs between the probe
and gallery while determining the degree of match.
Specifically, these methods aim to determine the in-
dividual pixel shifts required to best fit one image
to another during matching, consequently measuring
deformation at a fine level. While modeling image
deformations at a fine level can result in improved image
matching performance under low-noise or low-distortion
conditions, it can also lead to poor robustness against
more noisy observations as demonstrated in [27], [22],
and [28] as well as later in this paper. In addition, these
methods are often computationally prohibitive as will
be evident from our comparison of computation times.

In this work, we seek to estimate a similarity (or
match score) between images with relative distortions
rather than estimate the pixel level motion between the
images. Towards this end we estimate the deformation
between images at a patch/region level, as opposed
to pixel level. Using patches instead of pixels allows
the model to account for large image variations while
also capturing local distortions. Further, as the patches
contain several pixels, the noise in the individual pixel
distortions averages out to result in an improved esti-
mate of the local distortions. The trade-off is that the
model can no longer focus on granular details from pixel
level alignment between the gallery and probe images.

We approximate the deformation between the
patches/regions by a local translation between corre-
sponding patches in the image pair being compared (we
assume that a global alignment of the two images is
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(a) FOCS (top) and UBIRIS v2.0 (bottom) (b) BDCP intraclass (c) UBIPr (top) and FRGC (bottom)
Fig. 4. Examples of periocular images from different match scenarios: (a) Unconstrained Subjects: near infrared (NIR) and visible
light (VL) images demonstrating the challenging nature of the FOCS (top) and UBIRIS v2.0 (bottom) datasets. (b) Cross Sensor: the
BDCP dataset matches users captured with two separate sensors, CFAIRS (top) and LG4000 (bottom). (c) Cross Dataset: the model
is trained on one dataset (UBIPr, example images shown in the top row) and is tested on a different dataset (FRGC, example images
shown in the bottom row). Matching is performed using a only a single probe and gallery sample, also referred to as one-to-one (1 : 1).

first carried out, e.g., using a face detector to put boxes
around faces in images). This is completed by building
a classifier per patch in which the output of each
independent patch comparison produces a similarity
and location of best match (representing a spatial trans-
lation). To capture the prior on valid patch translations,
we employ a Gaussian Markov Random Field (GMRF)
[29] due to their ability to compactly represent pairwise
relationships between neighbors, as described in Section
VI. An overview of this approach can be seen in Fig. 2.

Our work builds upon Probabilistic Deformation
Models (PDMs) proposed by Thornton et al. [27] for
matching iris images in the presence of distortions,
demonstrating excellent performance given multiple
well segmented iris images for training. However as we
show in Section V and Section VIII-D, as the available
training data decreases, in the context of periocular im-
ages, this model is not expressive enough to accurately
match the probe to the gallery image. In this paper
we introduce, ‘Periocular PDM’ (PPDM), to adapt
PDM to challenging match scenarios while improving
its algorithmic efficacy. Our key contributions are:
• We introduce algorithmic improvements to the origi-

nal PDM model to improve deformation tolerance in
1 : 1 matching schemes. More specifically,
– We explicitly model the spatial variability in the

discriminative power of the patches composing the
biometric signature through the likelihood distri-
bution of our model.

– We decouple the individual deformation compo-
nents and estimate parameters as a linear regres-
sion problem to allow for a simpler, and more
efficient method to better capture authentic de-
formations while reducing the time and memory
complexity of model parameter estimation.

• A comprehensive comparison to several other meth-
ods on multiple periocular datasets demonstrating
the need for deformation estimation in 1 : 1 matching
schemes as well as the efficacy of PPDM. We achieve
state-of-the-art periocular recognition results under
the challenges of unconstrained subjects, illumina-
tion, occlusion, facial expression changes, and cross
sensor matching.

Furthermore, we evaluate PPDM across multiple differ-
ent challenging periocular matching scenarios:

1) Unconstrained subjects: The Face and Ocular
Challenge Series (FOCS) [30] and University of
Beira Interior iris (UBIRIS v2.0) [31] datasets dis-
play the presence of challenges shown in Fig. 3 and
Fig. 4a.

2) Cross sensor: The Biometrics Exploitation Science
and Technology (BEST) Development Challenge
Problem (BDCP) [32] dataset compares images of
users captured from two separate sensors (seen in
Fig. 4b), the LG4000 camera [33] (gray scale images
of just the eye) and the Honeywell Combined Face
and Iris Recognition System (CFAIRS) [34] camera
(RGB images capturing a region that varies between
the full periocular region and just the eye).

3) Separate dataset bias: Each model is trained us-
ing frontal view images from the University of Beira
Interior Periocular (UBIPr) [35] dataset and tested
on a subset of images from the Face Recognition
Grand Challenge (FRGC) [36].

II. Related Work
Matching biometric images with relative distortions

is a challenging problem. Pupil dilation from uncon-
trolled lighting has been shown to yield higher dissim-
ilarities between authentic iris image pairs [27], [37],
[38]. Distortion of the fingerprint from the elasticity of
the skin or the pressure often leads to difficulties in
matching [39], [40]. Facial expressions introduce non-
stationary image movements that notably affect match-
ing performance [41], [42]. Even unnatural factors such
as make-up and plastic surgery have been shown to
degrade matching in both facial and periocular recog-
nition systems [10], [43]. Additionally, large stand-off
distances, moving subjects, aging, and pose can cause
the performance of recognition algorithms to degrade
considerably. Accounting for such deformations is not
trivial, leading to several different approaches.

Kakadiaris et al. [44] as well as Cai and Da [45]
extract the facial distortion when performing 3D face
recognition by registering each face against a 3D anno-
tated reference model. Then during authentication, the
deformations are compared using a distance metric.

In an approach related to deformation extraction,
Chen et al. [39] performs fingerprint matching by di-
rectly estimating the average deformation from minu-
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tiae locations and orientations and then uses the defor-
mation model to pre-distort the gallery prior to match-
ing with a probe image. Schuckers et al. [46] developed
an angular deformation model to compensate for off-
angle iris samples by learning homographies at specific
gaze deviations (0◦, 15◦, and 30◦) and transforming the
off-angle iris into a frontal-view image for recognition.

In another approach, Bhatt et al. [9] implicitly com-
pensates for non-stationary variations within the face
by generating features at multiple levels of granular-
ity, and then using a genetic algorithm to determine
the best way to weight and combine the features for
matching. Juefei-Xu [47] uses kernel class dependence
feature analysis (KCFA) with LBP descriptors encoded
from discrete transform coefficients for robustness when
performing bi-ocular recognition. Unfortunately, such
methods require class label information for the training
dataset along with a large number of training images
per class. Our proposed method on the other hand only
requires similarity and dis-similarity labels per pair of
images and works with only one training image.

Outside the area of biometrics, estimating local defor-
mations for similar images is not a new area of research.
Many [2], [25] attempt to measure deformation at a fine
level, though others [22], [28] note the benefit of using
a coarse approximation to matching.

The method proposed in this paper, is most similar
to [9], [28], measures deformation at a region level.
However, instead of trying to find appropriate features,
optimizing for a defined shape, or extracting the dis-
tortion from each sample, the patch distortion model
in this paper is used to weight the patch similarities by
the likelihood of the respective estimated deformations
between the patches. Similar to [28], the spatial infor-
mation from each region approximates local observed
deformations, but as opposed to appending the global
position to the feature vectors, a GMRF learns relevant
region level xy translations between similar images.

Our approach for 1 : 1 matching of deformed pe-
riocular images is based on our previous work [11],
[48] where in the former work we use PDM for pe-
riocular recognition to investigate the effectiveness of
the ocular region as a biometric trait compared to iris
recognition when dealing with challenging ocular im-
ages. While in the later work we investigate periocular
image segmentation by applying PDM and m-SIFT
to the FOCS and UBIPr datasets. In this work we
expand on PDM, introducing PPDM as novel approach
to improving system performance by handling poor
deformation estimates frequently encountered in the
presence of challenges from real biometric acquisition
environments. We demonstrate the efficacy of PPDM by
achieving state-of-the-art periocular recognition results
under a separate dataset bias, cross sensor match-
ing, and a comprehensive comparison to several other
matching methods in addition to challenges presented
from unconstrained subjects and therefore represents a
large improvement in the state-of-the-art.

III. Overview
In this section we provide a broad overview of PPDM

for 1 : 1 matching of deformable patterns, see Fig.
2 for a pictorial illustration. A given probe image, I,
and gallery image, G, are divided into non-overlapping
rectangular patches and the corresponding probe and
gallery patches are matched via template matching.
The resulting outputs are then used as inputs into the
GMRF model, trained to capture the relationship be-
tween the deformations of the image patches for authen-
tic matches, which estimates the deformations between
the patches. These deformation estimates are used
to weight the similarities between the corresponding
patches to compute a match score between the gallery
and the probe. Applying this method to challenging
recognition scenarios presents additional difficulties to
account for poor deformation cues from a lack of train-
ing data to build gallery templates, occlusions, pose
change, etc. We tailor the PPDM model to these types
of scenarios through the likelihood and prior distribu-
tions. The likelihood distribution is built to explicitly
model the variability of the deformation cues across the
periocular region. While the prior distribution is con-
structed via efficient parameter estimation with linear
regression to better capture authentic deformations.

The local template matching scheme employed is
described in Section IV and Section V details our
deformation model. Details of the parameter estimation
process for the model are provided in Section VI fol-
lowed by model inference and similarity score computa-
tion in Section VII. Experiments throughout the paper
are performed over the datasets described in Section
VIII-A. Finally, full numerical experiments for periocu-
lar recognition are described in Section VIII with results
of PPDM (Section VIII-D) compared against baselines
(Section VIII-C).

IV. Deformation and Similarity Cues
We employ template matching to obtain the patch

similarity and deformation cues that serve as inputs to
the graphical model which determines a match score
between G and I by regularizing the individual patch
similarity score by their respective deformation esti-
mates. The template matcher serves to provide both
the deformation cues, x − y translation of each patch,
and the similarity cues, match score for each relative
shift between the corresponding patches. Therefore the
template matcher requires good localization perfor-
mance. Although models like Support Vector Machines
and Random Forests are widely used for discriminative
template matching, they are neither well suited for the
1 : 1 template scenario (only one training example) nor
are they explicitly designed for localization and hence
are unable to provide high localization accuracy. Corre-
lation filters (CFs) are another class of classifiers which
are generally designed for high localization performance
and can be designed even with just a single training
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Fig. 5. Overview for determining patch similarity. A template
is trained for each patch from gallery image and cross-correlated
with the corresponding patch from the probe. An authentic corre-
lation output produces a sharp peak at the location of best match.

image and are hence better suited to provide both the
deformation and the similarity cues.

CFs are well explained in previous publications [11],
[49], [50] and hence we provide only a brief summary.
A CF is a spatial-frequency array (equivalently, a tem-
plate in the image domain) that is specifically designed
from a set of training patterns that are representative
of a particular class. As displayed in Fig. 5, the trained
template is compared to a probe image by obtaining
the cross-correlation as a function of the relative shift
between the gallery and the probe. The idea behind CF
design is to control the shape of the cross-correlation
output between the training image and the filter by
minimizing the mean square error (MSE) between the
cross-correlation output and the ideal desired corre-
lation output for an authentic (or impostor) input
image. By explicitly controlling the shape of the entire
correlation output, producing a sharp peak at the center
of the correlation output for a centered authentic probe
pattern and no such peak for an impostor, CFs provide
more precise deformation estimates.

Considering that each patch region only provides
limited discriminative information to the entire image,
multiple feature sets are extracted to build a more
robust template, i.e., each pixel or a group of pixels is
represented by a vector of features. As displayed in Fig.
6a, we construct a set of feature channels by applying
a rectified linear unit (RLU: f(x) = max(0, x))1 to the
output derived from a bank of Gabor filters [51]. We
then design one CF per feature channel (K in total)
such that the correlation output is a sum of individual
outputs as depicted in Fig. 6b. Contrary to building K
independent CFs, we design all K CFs jointly to ensure
the output satisfies our design criteria. The joint CF
design is posed as the following optimization problem:

(1)
min

h1,...,hK

1
r

r∑
i=1

∥∥∥∥∥
K∑
k=1

zik ⊗ hk − gi

∥∥∥∥∥
2

2

+ λ

K∑
k=1
‖hk‖22

s.t.

K∑
k=1

hTk zik = ui i = 1, 2, · · · , r

1The RLU provides additional discrimination between the re-
sulting Gabor filter outputs to ensure that D̂ is full rank.

(a) Features are computed by applying a rectified linear unit
(ReLU) to the output derived from a set of Gabor wavelets [51]
(constituting the separate ‘feature channels’ when designing the
CFs (r = 1 and K = 8).

(b) The outputs of individual feature channels are aggregated to
produce the final correlation output which would have a sharp
peak at the target location.

Fig. 6. Overview of (a) feature extraction and (b) correlation
filter application.

where ⊗ denotes the correlation operation, zik is the
k−th feature dimension of image xi (of r images), hk is
the k−th correlation filter (corresponding to the k−th
feature) and gi is the desired correlation output for the
i−th image and ui is the desired ideal inner-product
output while λ is the regularization parameter. The
terms in Eq. 1 aim to minimize the MSE between the
actual and desired correlation output for each training
image while constraining the filter to produce a large
value (i.e., ui = 1) given an authentic correlation and
small value (i.e., ui = 0) otherwise.

The following closed form expressions for the CF,
Ĥ =

[
ĥT1 , . . . , ĥTK

]T
(where Ĥ ∈ CKM×1, K feature

sets and M is the dimensionality of each feature set),
can be derived by posing the optimization problem in
the frequency domain provided gi is a delta function
(see [50] for more details):

(2)Ĥ = T̂−1Ẑ
(
Ẑ†T̂−1Ẑ

)−1
u

where the hat indicates the 2D Discrete Fourier Trans-
form (DFT) and Ẑ =

[
ẑ1, ẑ2, . . . , ẑr

]
is the training

matrix composed of concatenated vectors ẑik from the
r training images of K feature sets in the frequency
domain (i.e., ẑi =

[
(ẑi1)T , . . . , (ẑiK)T

]T
where ẑik ∈ CM

and Ẑ ∈ CKM×r), and T̂ = λI + (1− λ) D̂ where I is
the identity matrix to provide regularization to noise
and D̂ is the average energy of the extracted features.

(3)D̂ =


1
r

∑
i
ẑ(i)∗

1 ẑ(i)
1 · · · 1

r

∑
i
ẑ(i)∗

1 ẑ(i)
K

...
. . .

...
1
r

∑
i
ẑ(i)∗

K ẑ(i)
1 · · · 1

r

∑
i
ẑ(i)∗

K ẑ(i)
K
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Fig. 7. (a) Example CF and normalized cross-correlation (NCC)
gallery template responses from the same authentic probe image
patch. (b) ROCs from PPDM with NCC (43.02% VR at 0.1%
FAR) versus PPDM with a CF (51.59% VR at 0.1% FAR) on the
FOCS dataset (left ocular).

Since the patch templates need to be learned for
every match pair, it is desirable to efficiently train the
templates. Solving for the template in Eq. 2 requires
the inverse of a rather large but sparse matrix T̂ ∈
CKM×KM with a special block structure where each
block is a diagonal matrix. By leveraging this structure
we recursively invert this matrix blockwise using the
schur complement which can be computed efficiently
since the blocks are diagonal matrices.

Each output Ci ∈ Ra×b (where a × b is the size of
a single patch from the probe image, M total pixels)
ideally exhibits a sharp peak at the location of the
best match thereby providing an estimate of the relative
shift (x, y) between the probe and gallery patches. The
lateral shift from the center of the correlation output
represents the local deformation, d (location of the peak
from center), while the peak height is defined as the
similarity score, S (I,G; d) (similarity of corresponding
patches of I and G at d), as illustrated in Fig. 8.

Since the role of the template matcher in our frame-
work is to provide both similarity and deformation
cues (modeled as spatial translations, see Section V for
details), it is important that the template is designed
for accurate pattern localization in addition to pattern
similarity. We demonstrate the effectiveness of our CF
based template matching scheme, which is specifically
optimized for pattern localization, by comparing it to
a simple normalized cross-correlation (NCC), which is
not specifically optimized for pattern localization be-
tween the probe and gallery features. Fig. 7a shows the
response of a gallery CF template and a gallery NCC
template to the same authentic probe image patch. The
CF template output exhibits a distinct sharp peak at
the location of the best match, while the NCC output is
much less sharp. Since the template not only provides
the similarity cues but the deformation cues as well,
sharper peaks lead to more robust matching as seen by
the receiver operating characteristic (ROC) curves in
Fig. 7b.

V. Deformation Model
The deformation that each pixel in the probe image

can undergo relative to the gallery image is often related
to the deformations of the other neighboring pixels in
the probe. Rather, the groups of pixels that move simi-
larly are correlated. In this paper, we approximate this
relative deformation between corresponding rectangular

Fig. 8. Synthetic example output from comparing an authentic
probe image patch with the corresponding gallery image patch.
The peak height represents the similarity, and the lateral shift
(∆x and ∆y) represents the deformation.

probe and gallery patches by a local spatial translation.
The estimated deformations for authentic match pairs
are expected to be more consistent compared to those
from impostor match pairs. This expected consistency
in the spatial translations across the different patches
for authentic match pairs is captured as a prior using a
Gaussian Markov Random Field (GMRF) model which
is learned from training data. Given a pair of images
we regularize the observed relative deformations of the
corresponding patches by a prior which captures the
space of valid deformations for authentic match pairs.

A. MAP Estimation
Both the I and G are divided into N non-

overlapping rectangular patches, and for the i−th
patch pair the relative spatial translation is denoted
by {(∆xi,∆yi)} as illustrated in Fig. 8. We define
the deformation for the image pair as a vector d =
[4x1,∆y1, · · · ,4xN ,∆yN ]T .

We compute the underlying latent deformation using
maximum-a-posteriori (MAP) estimation. For an au-
thentic match pair I and G we estimate the most likely
deformation vector between the two images:

d̂ = argmax
d

P (d|G, I)

= argmax
d

P (I|G, d) P (d|G)

= argmax
d

P (I|G, d) P (d)

≈ argmax
d

{
P (S (I, G; d)) · exp

(
−1

2dT Σ−1
d d

)}
(4)

where the likelihood P (I|G,d) is modeled by a distri-
bution over the patch similarity scores P (S (I,G; d))
and the prior probability distribution, P (d), is mod-
eled as a GMRF, with mean 0 (after accounting for
global relative shift between the probe and gallery) and
covariance matrix Σd ∈ R2N×2N .

B. Likelihood Model
In [27] the likelihood P (I|G,d) is modeled as,

(5)P (I|G,d) =
N∏
i=1

P (Si(I,G; di))

where the likelihood is approximated by the similarity
score S(·) between the probe and gallery for compu-
tational tractability. The similarity score, S(I,G; d),
is obtained from template matching across all spatial
translations as shown in Fig. 8 between I and G for
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a relative distortion parameter d, and is modeled by a
single normal distribution:

(6)P (I|G,d) =
N∏
i=1
N (di, µ, σ)

While modeling the similarity using the same distribu-
tion across the entire image is sufficient when multiple
samples are available for training, it does not perform
well in 1 : 1 matching scenarios. More specifically, this
method does not perform well across the periocular
region where the amount of discriminative texture for
each patch varies significantly. Therefore to allow for
the spatial variability in the distribution of the simi-
larity scores, we relax the likelihood model and allow
the distribution of the similarity scores to vary across
the image, a process we refer to as ‘Spatially varying
Likelihood’ (SVL), i.e.,

(7)P (I|G,d) =
N∏
i=1
N (di, µi, σi)

As described later in Section VII, the likelihood is used
to modify the correlation outputs from each compari-
son. Incorporating a distribution per patch allows for
the model to account for the discriminative capability
of each individual region.

C. Deformation Prior
With each deformation variable representing an im-

age region, the rectangular patch segmentation we em-
ploy in this paper will correspond to a rectangular graph
structure. We model the prior P (d) by a GMRF:

(8)P (d) =

∏
(i,j)∈ε

Ψd (di,dj)∑
d

∏
(i,j)∈ε

Ψd (di,dj)
=

1
Zd

exp
(
−

1
2

dTΣ−1
d d
)

where Ψd (di,dj) is the potential function relating the
deformations between neighboring nodes, ε denotes the
set of all the edges in the graph, and Zd is the partition
function. For GMRFs [29], [52], the potential functions
can be parametrically defined as follows while retain-
ing the structure of the precision matrix Σ−1

d (where
Σ−1

dij = 0 for non-neighboring di and dj):

Ψd (di,dj) = exp
[
−

1
2

(
α ‖di‖2 + α ‖dj‖2 + β ‖di − dj‖2

)]
(9)

where the α parameter captures the individual relative
node deformations and the β parameter captures the
consistency (smoothness) of the deformations between
neighboring patches. These parameters are encoded
into the sparse precision matrix, setting −β on the off
diagonals (of connecting nodes) and κj (α+ β) on the
diagonal (κj is the number of neighbors for node j).

As the distribution of the i−th deformation field
vector is Gaussian, the deformation sub-vectors x and
y are also Gaussian. Defining separate independent
potentials for the x and y deformation components:

Ψdx(dxi,dxj) = exp
[
−

1
2

(
αx‖dxi‖2+αx‖dxj‖2+βx‖dxi − dxj‖2

)]
(10)

where the potential function for the y component can
be defined similarly.

The resulting prior from decoupling the x and y
components is:

(11)
P (d) =

∏
(i,j)∈ε

Ψdx(dxi,dxj)Ψdy(dyi,dyj)∑
dx

∑
dy

∏
(i,j)∈ε

Ψdx(dxi,dxj)Ψdy(dyi,dyj)

=
1
Zd

exp
(
−

1
2

(
dxTΣ−1

dx dx + dyTΣ−1
dy dy

))
The x and y components of the deformation vector,

d, are separable allowing for the potential defining the
coupled model, Ψd, to be decomposed as the product
of the potentials for each component.

Just as we vary the likelihood spatially we can also
vary α and β spatially. This allows for training indi-
vidual parameters for each node and edge weight to
characterize the graph. In Eq. 12 and Eq. 13 we define
potentials that separate each individual αi and βij for
coupled and decoupled models, respectively:

(12)
Ψdij (di,dj) = exp

[
−

1
2

(
αi ‖di‖2 + αj ‖dj‖2 + βij ‖di − dj‖2

)]
(13)

Ψdxij (dxi,dxj) = exp
[
−

1
2

(
αx|i ‖dxi‖2

+ αx|j ‖dxj‖2 + βx|ij ‖dxi − dxj‖2
)]

VI. Parameter Estimation
Our proposed model as described in

Section V requires the following set of
parameters: {(α1, · · · , αN ), (β1, · · · , β|ε|)} and
{(µ1, · · · , µN ), (σ1, · · · , σN )}, where |ε| is the cardinality
of the set of all edges in the graph.

A. Likelihood Parameters
The parameters {(µ1, · · · , µN ), (σ1, · · · , σN )} model

the similarity scores obtained from matching the gallery
patch template to the corresponding probe patch. We
learn the parameters via maximum likelihood (ML)
estimation from training data, i.e., we estimate the
empirical mean and variance of the normal distributions
for every patch from the set of similarity values obtained
from a training set of authentic match pairs.

B. Prior Parameters
To learn the deformation parameters we need to know

the ground truth deformations between the correspond-
ing gallery and probe patches. However, observing the
ground truth deformations is not possible and manually
labeling the deformations is too difficult. Therefore, [52]
treats the ground truth deformations as latent vari-
ables and estimates the model (prior) parameters via
a computationally expensive and iterative expectation
maximization (EM) based approach. While guaranteed
to converge to some local maxima, the EM procedure
depends highly on initial starting points, often requir-
ing repeating the procedure multiple times to obtain
parameter values that fit well to the data. Instead
we found that simply treating the deformations esti-
mated from the likelihood (correlation outputs) as the
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Algorithm 1 GMRF: Parameter Learning
Require: Empirical Covariance: Ŝ

1: Initialize: W = Ŝ
2: while Repeat for k = 1, 2, . . . , N, 1, 2, . . . , N, . . .

until convergence do
3: Partition W =

[
W11 w12
wT

12 w22

]
{where w12 =

W[1:N−1,k] and w22 = Wkk}
4: Constrain: W∗

11 = W11 and s∗12 = s12 s.t.
W∗

11(i, j) = 0 and s∗12(i, j) = 0 ∀(i, j) 6∈ ε
5: Solve ρ̂∗ = (W∗

11)−1s∗12
6: Update: w12 = W∗

11ρ̂
∗

7: end while
8: Invert result Z = W−1

9: Extract parameter values from Z

ground truth deformations and learning the deforma-
tion parameters {(α1, · · · , αN ), (β1, · · · , β|ε|)} via linear
regression can help us learn deformation parameters
which provide significant performance gains over the
EM based approach presented in [52]. The result is
a much simpler model for better generalization while
being orders (≥ 100×) of magnitude faster to learn
since inference, whose computational complexity grows
linearly with the number of training instances, is no
longer needed to be performed during training.

Recall that for GMRFs the specific structure of the
precision matrix, Σ−1

d , carries the organization of the
model as zero terms for nodes not connected by an edge
in the graph (Σ−1

dij = 0 for (i, j) 6∈ ε, [29]). Methods like
Graphical LASSO [53] use this relationship to estimate
a meaningful (sparse) graph structure by maximiz-
ing the log-likelihood of the precision matrix. In our
problem, we use a pre-determined grid structure and
manipulate the Graphical LASSO problem to impose
this structure as the specific sparsity constraints to
solving the ML estimation problem. We first estimate
the covariance matrix to derive the precision matrix
and then derive the model parameters from the result.
Given the empirical covariance matrix, Ŝ, we estimate
the precision matrix, ∆, by solving:

(14)
max

∆
log|∆|−trace(Ŝ∆)

s.t. δij = 0 ∀(i, j) 6∈ ε
where log|∆|−trace(Ŝ∆) represents the log-likelihood
of the data and δij = 0 are the constraints enforcing the
graph (connectivity) structure in the precision matrix.
Decoupling the parameters, we first solve for the x com-
ponent, Ŝ , Σ̂dx, and then solve for the y component,
Ŝ , Σ̂dy, to derive the final graph parameters, where
by Eq. 11, αi = αx|i + αy|i and βij = βx|ij + βy|ij .

By the use of Alg. 1 the resulting sparse matrix Z
has non-zero terms for neighboring nodes consistent
with the structure of the graph. Thus, extracting the
individual α and β parameter values draws directly
from the precision matrix structure, where βij = Zij
and αi =

Zii−
∑

k∈π
βk

κi
(π is the set of neighbors for

node i, and κi = |π| is the cardinality) for i = 1, . . . , N .

The deformations exhibited by an authentic match
pair are expected to be more coherent than the de-
formations exhibited by an impostor match pair and a
single α and β may not be sufficient to capture the co-
herency in the deformations, specifically in challenging
environments. Nonetheless we provide a simple method
for extracting a single αx and βx model parameter set
from the estimated precision matrix Z via a regression
formulation (can also be used for the y component):

(15)min
Φ

‖b−AΦ‖22+γ‖Φ‖22

where b =


Z11

.

.

.
ZNN
Zε(1)

.

.

.
Zε(M)

, A =


κ1 κ1

.

.

.
.
.
.

κN κN
0 −1
.
.
.

.

.

.
0 −1

, Φ =
[
αx
βx

]
, γ is

a regularization parameter to prevent over-fitting, and
M is the cardinality of ε (here Z11 represents the value
located at the first row and first column of the matrix
Z, while Zε(1) denotes value that represents the first
(i, j) pair in the set of neighboring nodes and Zε(M)
denotes the last).

VII. Inference
Given the observations, i.e., correlation planes from

each patch comparison and the learned GMRF, we
estimate the deformations between the patches via in-
ference on the GMRF. We employ Iterated Conditional
Modes (ICM) over other methods due to its speed
advantage. While ICM has become less popular due to
its sensitivity to the initial estimate [54], it has been
found to be good for our purposes when initialized with
the correlation outputs, Ck (k = 1, 2, ..N), consider-
ing the correlation filter based templates provide good
deformation estimates. Since we observed empirically
that ICM converges in fewer than four iterations, we
perform a maximum of four iterations of ICM. The
result is a set of outputs representing the marginal
probability distribution under the assumption that this
is an authentic match pair. The final match score is
computed as the sum of the individual patch scores,

(16)M =
N∑
k=1
〈Sk, ϕk〉

where each patch score is the vectorized inner products
of the likelihood, Sk ∈ Ra×b (where a× b is the dimen-
sionality of a single patch from the probe image), with
the marginal posterior distribution of deformation given
the observed evidence from correlation, ϕk ∈ Ra×b. The
likelihood is determined by modifying Ck:

(17)Sk = 1
2

(
1 + erf

(
Ck − µk
σk

))
where erf (·) is the Gaussian error function, and the
mean (µk) and variance (σk) are learned from training.

VIII. Experimental Results
We evaluate Probabilistic Deformation Models

(PDMs) against many other 1 : 1 image matching tech-
niques for matching deformed patterns via extensive
and large scale experiments on periocular recognition.
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S1

S2

4m 5m 6m 7m 8m
Fig. 9. An example of UBIRIS v2.0 intraclass images spanning
five distances (columns: 4 to 8 meters) and two imaging sessions
(rows: S1 and S2).

A. Datasets
We now briefly describe the datasets introduced in

Section I that are used to evaluate the efficacy of PPDM
in comparison to other image matching algorithms.
• Face and Ocular Challenge Series (FOCS) [30]:

The periocular data in the FOCS dataset (Fig. 3
and 4a) consists of still images of a single eye region
at a resolution of 600×750 pixels with smaller iris
regions, specular reflections, and out of focus blur-
ring. The database has 9581 images (4792 left, 4789
right) of 136 subjects with between 2 and 236 images
per subject. These regions were extracted from near
infrared (NIR) video sequences collected from moving
subjects2 in an unconstrained environment exhibiting
drastic variations in sensor noise, illumination, gaze,
and occlusion. We pre-process the FOCS images by
a simple histogram normalization to compensate for
harsh illumination after centering on the pupil.

• BEST Development Challenge Problem
(BDCP) [32]: As stated in Section I, the BDCP
dataset3 is composed of images captured from two
different sensors, the LG4000 [33] and CFAIRS [34]
cameras. Images from the BDCP set, as shown in
Fig. 4b, appear more suitable for iris recognition
with images at resolutions of 480×640 pixels and
600×750 pixels for the LG4000 and CFAIRS sensors
respectively. The dataset consists of a total of 4314
images, 2577 images (1288 left, 1289 right) from
the CFAIRS sensor of 82 subjects, and 1737 images
(869 left, 868 right) from the LG4000 sensor of
99 subjects (subjects are shared between the two
sensors for a total 99 subjects). The CFAIRS set has
between 6∼60 samples/subject (31 samples/subject
on average) while the LG4000 set has between 5∼24
samples/subject (17 samples/subject on average).
We pre-process the BDCP images by cropping the
images at the eye corners to account for the scale
variation between the LG4000 and CFAIRS sensors
(this is the only dataset in which scale is normalized
during matching as the objective is to evaluate cross
sensor performance).

2Frames are extracted from Iris on the Move [55] videos of the
Multiple Biometric Grand Challenge (MBGC) Portal Track V2
dataset [56].

3The BDCP data served as a cross sensor challenge set for per-
formers in the ocular track of the Intelligence Advanced Research
Projects Activity (IARPA) Biometrics Exploitation Science and
Technology (BEST) program.

• Face Recognition Grand Challenge (FRGC)
[36]: This dataset is composed of periocular regions
manually segmented4 from a subset of images from
the FRGC Database (Fig. 4c). This set consists of
2272 images (1136 left, 1136 right) corresponding to
a total of 568 unique subjects (2 samples per eye per
subject) with a resolution of 241×226 pixels. The first
image of every subject is the gallery entry, while the
second is the probe. This experimental setup was used
in [1] (EER: 1.59% left, 1.93% right) and [57] (EER:
6.96% from averaging the left and right periocular
results). Note [8], [58] use a different subset of images
and hence the results are not comparable.

• University of Beira Interior Iris (UBIRIS) v2.0
[31]: This dataset is built for the purpose of simulat-
ing a less constrained acquisition of visible wavelength
iris images and there has been some work [8], [12],
[59], [60] which evaluates the feasibility of its use
for periocular recognition. In total, 11102 images are
acquired in unconstrained conditions (see Fig. 9) from
261 subjects over two sessions and five distances (4
to 8 meters). Unfortunately many of the UBIRIS
images do not contain eyebrows or other parts of the
periocular region. Provided the many efforts [7], [12],
[48], [57]–[59] which demonstrate the discriminative
power of including the eyebrows and surrounding skin
texture when performing periocular recognition with
visible light images, we only evaluate images from
distances of 6m, 7m, and 8m using the experimental
setup from [12] (however we don’t match individual
distances, e.g., 6m vs 6m, 7m vs 7m, and 8m vs
8m, rather use ‘Experiment 3’, comparing images at
all distances 6m-8m vs images at all distances 6m-
8m). Note that [8], [59], [60] each use separate and
unique subsets5 collected from all distances (4m-8m)
and hence results are not comparable.

• University of Beira Interior Periocular
(UBIPr) [35]: Designed as a dataset for periocular
recognition experiments in uncontrolled acquisition
environments, the images (Fig. 4c) are captured with
a visible light sensor and vary in pose, gaze, stand-off
distance, and illumination. Composed of 10252 (5126
left, 5126 right) periocular images over 344 subjects,
the pose variation in the images include frontal and
both side views and the stand-off distance varies
from 8 meters to 4 meters with varying resolution:
501×401 pixels for 8m, to 1001×801 pixels for 4m.
Unlike UBIRIS data, the images from all stand-off
distances in the UBIPr set contain the full periocular
region (including eyebrows and surrounding cheek
information), thus performance is evaluated over the
entire dataset.

The FOCS set can be considered as a benchmark
for a low quality, high distortion dataset while the

4Coordinates were provided by the authors of [57].
5 [59] uses 2340 images (separated by match pair rather than

by image), [60] uses 480 images (400 gallery, 80 probe), and [8]
uses 1000 images (96 for training and 904 for evaluation).
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BDCP set exhibits less distortion than FOCS (no user
movement or gaze variation) over different sensors in a
relatively benign environment. The UBIPr and UBIRIS
v2.0 datasets supplement the FOCS data by offering
higher quality unconstrained images at varying stand-
off distances, and the FRGC set has little to no visible
distortion with good image quality.
B. Baseline Algorithms

We now briefly describe the baseline algorithms that
we compare to PPDM on the periocular datasets. We
also provide comprehensive timing metrics in Table VII
for each algorithm presented.
• LBP-GIST (GLBP) [12]: We implemented the fu-

sion (computed as a weighted sum of the chi-squared
distance) of LBP and GIST features to capture both
texture and shape.

• LBP-HOG-SIFT (LHS) [24], [35], [57]: We im-
plemented the fusion (using logistic regression) of
local binary patterns (LBP), histogram of oriented
gradients (HOG),6 and dense SIFT (DSIFT) features
(using the VLFeat library [61]). For the LBP and
HOG feature sets, we use an 8 pixel cell size and
determine match scores using city block (LBP) and
euclidean distances (HOG and DSIFT).

• Modified SIFT (m-SIFT) [1]: Matching is per-
formed using a modified version of the standard
SIFT features. The keypoints to match are spatially
constrained to lie in the same region for the gallery
and the probe image.

• Full Correlation (F-CF): Each image is directly
compared using the technique described in Section
IV, however, each image is not divided into patches,
rather, a template is built using the entire image after
feature extraction using Gabor filters (see Fig. 6a).

• SIFT-Flow (SFlow) [26]: The alignment between
the probe and gallery periocular images is estimated
by matching DSIFT features. The pixel-wise motion
field is estimated via energy minimization similar to
optical flow. While SIFT-Flow can provide accurate
pixel-wise motion estimation between the probe and
gallery it is computationally expensive as is evident
from Table VII.

C. Evaluation
Each method is evaluated in a 1 : 1 image-to-image

matching scenario on each periocular dataset. The ver-
ification rates (VRs), computed as 1 - the False Reject
Rate (FRR) at 0.001 False Acceptance Rate (FAR), of
the best performing experiments are shown in Table I
and Table II with the corresponding receiver operating
characteristic (ROC) curves in Fig. 10 (equal error rates
are also displayed in the legend of each ROC).

In each of the tests presented using the FOCS, BDCP,
and UBIPr datasets we use 5-fold cross validation
reporting overall VRs at 0.001 FAR (from the scores
obtained by concatenating the associated folds) as a

6Termed gradient orientation histograms (GOH) in [57].

measure of system performance. Within each fold, each
image is independently compared against another (left
vs left and right vs right) to generate score matrices
for the left and right periocular matches from each re-
gion selection (excluding self-comparisons). Thus, when
constructing the correlation filters for determining the
deformation cues between a probe and gallery, only a
single image is used for building the filter with no other
authentic or impostor images included (we set λ = 10−5

for all experiments that use a correlation filter).
Each of the baseline algorithms also use the same

5-fold cross validation paradigm for a fair comparison
over varying periocular image sizes: 64×64, 128×128,
256×256, and 384×384 pixels, concatenating the match
scores from the same test sets used in the PDM ex-
periments. By running the experiments over varying
image resolutions (and reporting the best results) we
remove any potential performance bias based on the
dimensionality of the image. Our results indicate that
images up to size 384×384 pixels have sufficient detail
to capture the underlying periocular features as better
performing baselines obtained best results at a lower
resolution, e.g., m-SIFT and SIFT-Flow usually had
best results at 256×256 pixel resolutions.

The FRGC experiments are performed such that the
first image sample for each subject is the gallery image
and the remaining images are the probe images to
create a 568×568 score matrix. For FRGC experiments
using PDM and LHS (regression weights for score fu-
sion) methods, training is performed with only frontal
view images7 from UBIPr.

Finally experiments on the UBIRIS v2.0 dataset
only evaluate images from distances of 6m, 7m, and
8m, designating the first two images per distance as
the gallery set and the remaining per distance as the
probe set. This match scenario is also performed by
[12] (however we don’t match individual distances, e.g.,
6m vs 6m, etc., rather use ‘Experiment 3’, comparing
images at all distances 6m-8m vs images at all distances
6m-8m) who report a rank-1 identification accuracy of
∼17% (obtained from the CMC curve) after fusing the
results from both periocular regions.

D. Results
Table I summarizes the best result for each of the

baselines we compare PDM based algorithms (PDM
[27], PDM with SVL, and PPDM) against for 1 : 1
image matching. Of the five baselines, we observe that
SIFT-Flow, which estimates pixel level pattern defor-
mation, performs the best on FOCS, FRGC, UBIRIS,
and UBIPr datasets, while m-SIFT performs best on
BDCP, closely followed by full image correlation (F-
CF). In general, as expected, we observe that algo-
rithms which are tolerant to pattern distortions, like
SIFT-Flow, perform better than algorithms which are

7By using only the frontal views at all stand-off distances in the
UBIPr dataset we collect 3418 (1709 left, 1709 right) periocular
images (∼5 samples/subject)
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Fig. 10. Best baseline and PDM/PPDM ROC curves for left and right periocular regions on each dataset. Corresponding equal error
rates (EER) are displayed in the legend for each method.

TABLE I
Left (L) and right (R) periocular recognition baseline

VRs at 0.001 FAR.
FOCS BDCP FRGC UBIRIS UBIPr

GLBP R 3.59% 13.91% 22.54% 2.39% 6.27%
L 2.89% 13.25% 30.63% 2.45% 4.68%

LHS R 19.83% 2.02% 81.69% 12.10% 46.22%
L 15.10% 0.94% 69.89% 11.50% 40.39%

m-SIFT R 12.21% 37.71% 93.66% 26.29% 20.11%
L 12.67% 37.56% 94.37% 27.99% 24.26%

F-CF R 28.43% 36.30% 89.08% 16.85% 50.70%
L 28.25% 35.21% 88.20% 15.42% 47.67%

SFlow R 33.39% 11.18% 97.54% 39.39% 82.08%
L 27.73% 23.26% 97.54% 41.56% 76.08%

not explicitly designed to be tolerant to pattern distor-
tions, such as GLBP based nearest neighbor classifiers.

Fig. 10 displays the ROCs which also supports our as-
sessment in Section VIII-A about the difficulty of these
datasets. The overall effectiveness of each baseline algo-
rithm demonstrates that the data quality in the UBIPr
and FRGC datasets allow for good recognition rates,
while data that is prone to more distortion between the
subject samples, such as varying the sensor and/or time
of acquisition as described in the BDCP, FOCS, and
UBIRIS sets, degrades the system performance.

The best results for PDM and PPDM on ocular
datasets occurs at 128×128 pixel images with a 6×6
patch configuration. Table II summarizes results from
PDM and PPDM over each dataset. The experimental
results show that the proposed PPDM design outper-
forms both the original PDM method as well as the
baselines by a significant margin on the FOCS, BDCP,
and UBIPr datasets.

SIFT-Flow performs best on the FRGC dataset with
a VR of 97.54% for both the left and right eyes re-
spectively with PPDM achieving a comparable VR of
95.60% and 94.54% for the left and right eye. On the
UBIRIS dataset the VR improves from 12.24% left and
19.27% right with PDM to 22.18% left and 23.07% right
when using PPDM, however underperforms against m-
SIFT and SIFT-Flow (which are deliberately designed

TABLE II
Left (L) and right (R) periocular recognition VRs at

0.001 FAR from PDM/PPDM on each dataset.
FOCS BDCP FRGC UBIRIS UBIPr

PDM R 39.43% 49.64% 94.72% 19.27% 72.20%
L 37.55% 43.53% 93.13% 12.24% 75.59%

PDM w/ SVL R 46.75% 56.57% 94.89% 19.37% 83.03%
L 45.95% 46.94% 94.01% 18.66% 76.82%

PPDM R 51.00% 58.96% 94.54% 23.07% 85.28%
L 51.59% 53.51% 95.60% 22.18% 81.49%

for large scale changes) with the best performance as
41.56% on the left and 39.39% on the right regions.

On the FOCS dataset the VR improves from base-
lines of 28.25% left (F-CF) and 33.39% right (SIFT-
Flow) to 51.59% left and 51.00% right when using
PPDM. The baseline for BDCP of 37.56% VR for the
left eye and 37.71% VR for the right eye from m-SIFT,
respectively, improves to 53.51% and 58.96% for the
left and right eye respectively with PPDM. Finally,
on the UBIPr dataset the VR improves from 76.08%
left and 82.08% right with SIFT-Flow to 81.49% left
and 85.28% right when using PPDM. This indicates
that there is a consistent performance increase from
PPDM over PDM (by ∼30%) and all baselines (by
∼40%) across the FOCS, BDCP, and UBIPr datasets
(SIFT-Flow outperforms PPDM on the UBIRIS and
FRGC datasets). The displayed results demonstrate the
significance of the PPDM method on challenging data
and match scenarios (1 : 1).

IX. Discussion
In this section we analyze PPDM results and com-

ment on some additional properties of the proposed
algorithm. Fig. 11 displays scatter plots with density
information (outside curves) comparing the authentic
and impostor match scores from PPDM with PDM
(top) and SIFT-Flow (bottom) for the FOCS, BDCP,
and FRGC datasets (left periocular region). Each plot
separates the cluster into four regions based on the
match score threshold which determines the verification
rate (VR) at 0.001 FAR. The regions with points
colored blue and black indicate match scores for
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(a) FOCS (b) BDCP (c) FRGC
Fig. 11. Scatter plots with density information compare the authentic and impostor match scores from PPDM with PDM (top)
and SIFT-Flow (bottom) for the FOCS, BDCP, and FRGC datasets. Each plot separates the cluster into four regions based on the
match score threshold which determines the verification rate (VR) at 0.001 FAR. The blue and black regions indicate match scores
for which both algorithms perform the same classification, the green regions indicate only PPDM performing a correct classification,
and red regions indicating a correct classification from only PDM or SIFT-Flow, respectively.

TABLE III
Comparing algorithm specific false negatives (FN) from

authentic match score clusters.
PPDM FN vs PDM FN PPDM FN vs SFlow FN

# of samples change # of samples change

FOCS 472 vs 7752 16.42× 272 vs 12646 46.49×
BDCP 102 vs 1206 11.82× 12 vs 4694 391.17×
FRGC 1 vs 15 15.00× 14 vs 3 0.21×

TABLE IV
Comparing algorithm specific false positives (FP) from

impostor match score clusters.
PPDM FP vs PDM FP PPDM FP vs SFlow FP

# of samples change # of samples change

FOCS 3174 vs 3162 1.00× 3794 vs 3780 1.00×
BDCP 562 vs 562 1.00× 888 vs 888 1.00×
FRGC 281 vs 280 1.00× 318 vs 318 1.00×

which both algorithms have the same classification result
(both correct or both incorrect).8 While the regions
with points colored green indicate where only PPDM
correctly classifies the probe image to the gallery with
the remaining region (red points) indicating a correct
classification from only PDM or SIFT-Flow, respec-
tively. We compare the score distributions of PPDM,
PDM, and SIFT-Flow to provide an indication of where
competing methods fail and where PPDM succeeds.
Specifically we compare authentic and impostor match
score errors, i.e., false negatives (FN) and false positives
(FP) displayed in the red and green regions. We chose
to include SIFT-Flow since the method is the most
effective baseline (outperforming PPDM on FRGC).

From Tables III and IV and the graphs in Fig. 11
we observe that PPDM is more effective at decreasing
the number of false negatives (average change is >50×)
than reducing the number of false positives (∼1.00×).
That is, in these instances we observe quantitatively
that PPDM succeeds by being more effective at iden-
tifying an authentic match (reducing the false accept
rate). This result is verified by computing the statistical
significance of PPDM’s improved performance when

8We focused the plots at the crossing point of both VR thresh-
olds thus possibly cutting off part of the blue and black clusters.

TABLE V
Comparing the number of correct authentic

classifications from PPDM and PDM-SVL when PDM
produces a false negative.

only PPDM is
correct

only PDM-SVL
is correct only PDM errors

FOCS 2844 (32.76%) 56 (0.65%) 4908 (56.53%)
BDCP 540 (32.03%) 56 (3.32%) 666 (39.50%)
FRGC 10 (62.50%) 0 (0.00%) 5 (31.25%)
# of samples (% of authentic matches not sharing a classification)

TABLE VI
Comparing the number of correct impostor

classifications from PPDM and PDM-SVL when PDM
produces a false positive.

only PPDM is
correct

only PDM-SVL
is correct only PDM errors

FOCS 1958 (27.77%) 222 (3.15%) 1204 (17.08%)
BDCP 308 (18.92%) 180 (11.06%) 254 (15.60%)
FRGC 169 (25.26%) 6 (0.90%) 111 (16.59%)
# of samples (% of impostor matches not sharing a classification)

compared to chance. By using the values displayed in
the tables we tallied the total number of separate errors
for each specific algorithm (e.g., for PPDM vs PDM
on FOCS, PPDM has 3646 errors and PDM has 10914
errors) and performed a McNemar test [62] to calcu-
late corresponding p−values. The resulting p−values
indicate that improvement from PPDM on the FOCS
and BDCP datasets is significant with p < 0.0001,
while PPDM/SIFT-Flow improvements on FRGC are
not significant with p > 0.01 (however, we already knew
this given the small dataset size and similar verification
rates). Fig. 12 displays some true positive (TP) and
true negative (TN) examples where PPDM outperforms
PDM by the widest margin, e.g., the difference between
the PPDM TP scores and the VR threshold is combined
with the difference between corresponding PDM match
scores and sorted (to get the largest margin). From Fig.
12 it is clear that PPDM is improving on challenging
matches within both FOCS and BDCP datasets.

When quantitatively comparing PPDM to SIFT-
Flow within the FOCS and BDCP datasets there is a
large number of shared errors (blue regions) that is not
also reflected in the FRGC results (which suggests that
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PPDM TP (PDM FN) PPDM TN (PDM FP)
Left Ocular Right Ocular Left Ocular Right Ocular

FOCS

BDCP

Probe Gallery Probe Gallery Probe Gallery Probe Gallery
Fig. 12. True positive (TP) and true negative (TN) examples where PPDM outperforms PDM by the largest margin on the FOCS
and BDCP datasets.

in this case the two algorithms may perform well if com-
bined through score fusion). As a fine grained approach,
SIFT-Flow has shown to perform well under low-
noise/low-distortion conditions by reducing the number
of false positives (FP), while PPDM being a coarse
approximation has shown to be robust in harsh environ-
ments by reducing the number of false negatives (FN).
However, as displayed in Table VII, SIFT-Flow is often
computationally prohibitive, where PPDM (MATLAB
implementation) is significantly more computationally
efficient (∼6× faster) than SIFT-Flow (MEX imple-
mentation). Other methods such as m-SIFT (MEX
implementation [61]) may be noticeably faster, however
sacrifice accuracy.

In addition to determining where PPDM succeeds
over PDM, we also briefly examine when the proposed
likelihood (SVL) or prior model is more responsible
for PPDM’s success. Similar to Tables III and IV, we
focus on authentic and impostor match score errors,
specifically targeting instances when PDM incorrectly
classifies the probe image to the gallery but PDM-SVL
and/or PPDM succeed (equivalent to the green regions
in Fig. 11). Tables V and VI display the number of sam-
ples found in each resulting cluster and how the cluster
size relates to the total number of matches outside
overlapping classifications.9 To put it into perspective,
one can add columns 1 and 3 (only PPDM is correct
+ only PDM errors) to get the number of samples
for PDM FN and PDM FP from Tables III and IV,
respectively. For example, from the FOCS authentic
match scores we see that, 2844 (only PPDM is correct)
+ 4908 (only PDM errors) = 7752 (PDM FN), thus,
from the 7752 samples we can observe that 4908 occur
from both PPDM and PDM-SVL, while the remaining
2844 come from only PPDM. This process can also be
repeated for columns 2 and 3 (only PDM-SVL is correct

9Composed of the set of matches in which all models do not
share the same result (equivalent to regions which are not colored
blue or black in Fig. 11).

TABLE VII
Computation times (in milliseconds) from the best

resulting image size/model on each periocular dataset.
Each time per comparison is recorded from matching a

random assortment of ∼1000 authentic and ∼9000
impostor comparisons (generating a 100×100 score

matrix) and averaging the result. These tests were
completed (single thread) on a 64-bit laptop with a 2.67

GHz dual core Intel i7-620M CPU and 8 GB of RAM.

FOCS BDCP FRGC UBIRIS UBIPr

GLBP 0.443 0.067 0.067 0.021 0.025
LHS 4.131 3.351 4.060 3.340 104.471

m-SIFT 2.445 16.779 5.290 15.105 8.520
F-CF 22.391 52.843 19.257 50.993 176.419
SFlow 625.183 648.244 550.751 302.957 1404.772
PDM 93.331 94.441 98.310 85.830 84.435

PPDM 99.021 93.566 103.991 87.399 80.477

+ only PDM errors) to illustrate the breakdown of the
PDM FN and PDM FP clusters when compared against
just PDM-SVL.

For all of the datasets we first observe that there
are comparatively few match pairs where only PDM-
SVL provides a correct classification (thus the proposed
likelihood and prior models rarely conflict), suggesting
that instances where both PPDM and PDM-SVL suc-
ceed (i.e., only PDM errors) can be attributed primarily
to SVL. Hence, because the largest number of samples
appear in such instances (only PDM errors) for authen-
tic match scores, we can infer that most of PPDM’s
performance gains over PDM from reducing the number
of FNs on FOCS and BDCP are due to SVL. We also
observe that while there is little change in the total
number of FPs between PPDM and PDM (seen in
Table IV), the breakdown of the clusters shows that
the proposed parameter estimation method is slightly
more effective than SVL. However this result does not
discount the PPDM prior model which provides a large
increase to system performance over EM (and more
than SVL on FRGC) while greatly reducing the compu-
tational expense by not requiring the use of inference.

Furthermore, while the focus of this paper has been
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Fig. 13. Best baseline and PDM/PPDM CMC curves for left and right periocular regions on each dataset. Corresponding rank-1
identification (ID) rates are displayed in the legend for each method.

1 : 1 image matching, we also briefly investigate:
• 1 : N identification - Fig. 13 displays cumulative

match characteristic (CMC) curves for the best base-
lines and PDM/PPDM algorithms on each dataset.
From the figures we observe the performance against
the baselines is consistent with the results from 1 :
1 recognition, achieving excellent accuracies on all
datasets. However, unlike in verification scenarios, we
see that PPDM is similar to PDM during identifi-
cation scenarios (rather than greatly outperforming
PDM). As previously discussed, PPDM improves on
PDM by decreasing the number of false negatives
rather than reducing the number of false positives.
While this is beneficial in verification scenarios (less
authentic pairs are classified as impostors), it has lit-
tle benefit in increasing the rank-1 identification rate
(which is better served by decreasing false positives,
thereby having less impostors classified as authentic).

• More than one gallery image per template -
Table VIII displays the resulting EERs, VRs, and
rank-1 IDs when using an additional gallery image
per subject (i.e., 2 authentic and no impostors) as well
as the setup from [27] (3 authentic and 10 impostor
images) on the FOCS dataset. The results show PDM
outperforming PPDM when extra data is available for
the gallery template (3 Auth, 10 Imp). As previously
stated, the crux of the PDM algorithm is the strength
of the deformation cues, i.e., the patch similarity
strength and spatial shift. Thus, as the number of
training images increases the number of variations in
the correlation planes will decrease and the PPDM
techniques will overfit to the training data.
Finally, based on the experimental results and above

analysis we would like to pinpoint some strengths and
limitations of PPDM. We observe that in general,
PPDM is well suited for 1 : 1 verification scenarios due
to its ability to identify an authentic match pair (reduc-
ing the number of false negatives). However, while able
to produce consistently good performance, it fails to
achieve large gains in identification scenarios over PDM

TABLE VIII
FOCS left (L) and right (R) periocular recognition

EERs, VRs at 0.001 FAR, and rank-1 IDs using additional
training data.

2 Auth, 0 Imp 3 Auth, 10 Imp

EER VR ID EER VR ID

PDM R 18.03% 47.10% 99.94% 15.47% 34.89% 99.22%
L 20.47% 42.86% 99.22% 14.57% 46.97% 98.96%

PPDM R 15.98% 52.52% 99.87% 16.94% 39.45% 99.24%
L 17.59% 49.19% 99.38% 17.11% 38.70% 99.09%

due to its limited ability to reduce the number of incor-
rectly classified impostor matches. The results from the
FOCS dataset demonstrate that PPDM provides large
improvements even in the presence of scale, rotation,
and pose variations (even outperforming baselines that
are designed to be scale and/or rotation tolerant such
as LBP+HOG+SIFT, m-SIFT, and SIFT-Flow). Nev-
ertheless, even though PPDM rank-1 ID rates on the
UBIRIS data significantly outperform previous state-
of-the-art in [12], the resulting EERs and VRs indicate
that there exists areas for continued development when
in the presence of drastic scale changes.

X. Conclusions
Periocular recognition is an emerging biometric

modality for human recognition under challenging sce-
narios. While there has been much work on periocular
recognition, most assume that periocular patterns do
not undergo local in-plane deformations. In this pa-
per we show that periocular regions indeed undergo
local in-plane deformations, especially under challeng-
ing imaging conditions, and accounting for these local
distortions in the image matching process can result in
significant improvements in the image matching perfor-
mance leading to state-of-the-art periocular verification
on multiple challenging periocular datasets.

We build upon the Probabilistic Deformation Models
(PDM) approach originally proposed by Thornton et
al. [27] to introduce the ‘Periocular PDM’ (PPDM)
framework, achieving substantial performance and com-
putational improvements. We derive the PPDM frame-
work by designing the model to specifically consider lo-
cal discriminative information under the intuition that
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challenging environments increase intra-class variation.
The proposed Spatially varying Likelihood (SVL) is a
direct implementation of this concept by regulating the
likelihood distribution to fit patches based on how they
perform. The analysis presented in Section IX identi-
fies SVL as responsible for the majority of PPDM’s
performance gains over PDM, illustrating the value of
modeling local discriminative ability.

In a similar fashion, the proposed GMRF parameter
estimation technique stems from the desire to toler-
ate less reliable deformation measurements. Learning
is completed using the empirical covariance thereby
removing the need to perform costly inference over the
noisy deformation planes. The result being a simpler
model for better generalization while also offering sig-
nificant computational advantages.

We demonstrated the effectiveness of the PPDM
approach as well as the limitations though rigorous
experimentation and in-depth analysis. From the pre-
sented results we found that PPDM offers ∼30% im-
provement over PDM and ∼40% improvement over
the best baseline in verification performance. In future
work, we intend to explore the use of an alignment
scheme (e.g., affine transformation) to address extreme
scale and/or rotation variations, as well as the design
of a discriminative model for deformation estimation to
better separate authentic and impostor match pairs.
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