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Abstract—Correlation filters (CFs) are a class of classifiers that are attractive for object localization and tracking applications.

Traditionally, CFs have been designed in the frequency domain using the discrete Fourier transform (DFT), where correlation is

efficiently implemented. However, existing CF designs do not account for the fact that the multiplication of two DFTs in the frequency

domain corresponds to a circular correlation in the time/spatial domain. Because this was previously unaccounted for, prior CF

designs are not truly optimal, as their optimization criteria do not accurately quantify their optimization intention. In this paper, we

introduce new zero-aliasing constraints that completely eliminate this aliasing problem by ensuring that the optimization criterion

for a given CF corresponds to a linear correlation rather than a circular correlation. This means that previous CF designs can be

significantly improved by this reformulation. We demonstrate the benefits of this new CF design approach with several important

CFs. We present experimental results on diverse data sets and present solutions to the computational challenges associated

with computing these CFs. Code for the CFs described in this paper and their respective zero-aliasing versions is available at

http://vishnu.boddeti.net/projects/correlation-filters.html
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1 INTRODUCTION

C
ORRELATION filters (CFs) are a useful tool for a variety

of tasks in signal processing and pattern recognition, such

as biometric recognition [1], [2], object alignment [3], action

recognition [4], object detection [5], [6], [7], object tracking

[8], [9] and event retrieval from videos [10]. CFs possess

many attractive properties that make them useful for these

tasks. Most importantly, CFs are capable of performing both

classification and localization simultaneously. In other words,

CFs do not assume prior segmentation of objects in test scenes,

and are capable of detecting and classifying multiple objects in

a single scene simultaneously. CFs are shift-invariant, which

means that the objects to be recognized do not have to be

centered in the test scene as CFs produce correlation peaks at

locations corresponding to the object location in the test scene.

These properties make CFs attractive for different applications.

There are two stages in the use of CFs. First, a CF template

(a template refers to a 2D array in spatial domain) is designed

from a set of training images (we will refer to images and

their 2-D Fourier transforms in this paper, but the concepts and

methods are equally valid for 1-D temporal signals and higher-

dimensional signals such as image sequences). This template

is designed such that cross-correlating it with centered positive

training images leads to correlation outputs with sharp peaks

at the origin and cross-correlating it with negative training
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images leads to, either no such discernible peaks or negative

peaks. Once designed, the CF is then applied to the test

scene, which may be larger than the template itself. The

output correlation plane is then searched for positive peaks to

determine if any objects from the positive class are detected

within the test image. The location of the correlation peak

denotes the location of the target; the sharpness of the peak,

i.e., how large the peak value is compared to surrounding

values, may serve as a measure of confidence regarding the

existence of the target.

CFs have traditionally been designed in the spatial fre-

quency domain for computational efficiency. Typically, various

metrics are optimized during filter design. One example is

minimizing the mean squared error (MSE) between a de-

sired correlation output and the actual correlation output. In

formulating these optimizations, cross-correlation in spatial

domain is expressed in the frequency domain as the element-

wise multiplication of the CF and the conjugate of the Dis-

crete Fourier Transform (DFT) of the training image. Cross-

correlating two images of size N × M , using fast Fourier

transform (FFT) algorithms (for obtaining 2-D DFTs) requires

on the order of NM log(NM) multiplications whereas a di-

rect spatial-domain correlation requires on the order of N2M2

multiplications. However, this DFT-based correlation operation

produces a circular correlation rather than a linear correlation

[11]. The difference between a linear correlation and a circular

correlation can be significant (see Fig. 1). Circular correlation

results in aliasing, i.e., parts of linear correlation being added

to other parts of itself. This aliasing directly influences the

localization performance of the CF. When the CF is applied to

a test image, aliasing from circular correlation in that operation

can be avoided by appropriately padding the template and

test image with zeros prior to computing the DFTs. However,

http://vishnu.boddeti.net/projects/correlation-filters.html
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Fig. 1. An example illustrating the differences between linear and
circular correlation. Here, the input signal in (a) is correlated with
itself by appropriately padding the input signal with zeros. The result
is the linear correlation output (shown in (b)). This is accomplished
with a DFT of size N = 2× 16− 1 = 31. The circular correlation
output (in part (c)) is generated with a DFT of size 16. Because
the signals are not zero-padded, the output in part (c) is a circular
correlation. In this example, the effects of aliasing due to circular
correlation are very obvious; in other examples, the effects may be
less noticeable, but still can affect performance.

simply zero-padding the images does not resolve the aliasing

problem in the CF design stage. In the past, this fact was

mostly ignored, and the optimization needed for CF design

was carried out with the incorrect assumption (as we will show

in this work) that the circular correlation in CF designs was

roughly the same as the linear correlation.

This inconsistency between the CF design and CF use exists

not only in the well-known Minimum Average Correlation

Energy (MACE) filter [12], but also in many other CF designs,

including (but not limited to) the designs presented in [5],

[9], [13], [14], [15], [3], [6], [7], and [16]. As we will show

in this paper, significantly improved object classification and

localization results can be obtained in all CF approaches

by removing the aliasing effects due to circular correlation.

The problem of circular correlation in CF designs has been

mostly ignored for many years; in this paper, we present a

solution to this problem. This solution is a fundamental and

significant advancement to the design of CFs. Specifically, we

introduce what we term zero-aliasing (ZA) constraints, which

force the tail of the CF template to zero, which means that

the corresponding optimization metric will correspond to a

linear correlation rather than a circular correlation. These ZA

constraints yield zero-aliasing correlation filters (ZACFs) that

are consistent with the original design criteria of existing filter

designs. This means that the correlation outputs resemble their

intended design. As a result, the performance of ZACFs is

significantly improved over conventional CFs. While CFs may

not be the best solution for all object recognition problems

(e.g., in some problems, the test objects may be centered,

thus not benefiting from the CF’s localization capabilities),

our ZACF approach does offer improvements over existing

CF designs that span over multiple decades.

A high level overview of our approach is shown in Fig.

2. We introduced ZA constraints for only the MACE filter in

[17]; in this paper, we extend our work on this subject. The

contributions of this paper are as follows:

• Extension of ZA constraints to major classes of CF de-

signs (for both scalar and vector features representations),

• Reduced-aliasing correlation filters (RACFs), which offer

a computationally more tractable closed-form solution to

the problem, while still allowing some aliasing,

• Fast, efficient and scalable iterative proximal gradient

descent based approach for numerically solving ZACF

designs,

• A computational and performance comparison of the

different methods,

• Numerical results on a variety of datasets demonstrating

the superior performance of ZACFs.

Although the main focus of our paper is CFs, we note that

many other problems (e.g., convolutional sparse coding [18],

convolutional neural networks [19]) which are dependent on

convolutions or correlations and are solved in the Fourier do-

main can potentially benefit from our general observations and

the addition of ZA constraints to their respective optimization

formulations.

This paper is organized as follows. In Section 2, we summa-

rize related literature. We illustrate the details of circular corre-

lation issue using the well-known MACE filter as an example

in Section 3. In Section 4, we show how ZA constraints may be

added to several other popular CF designs, namely the Optimal

Tradeoff Synthetic Discriminant Function (OTSDF) filter [16];

the Minimum Output Sum of Squared Errors (MOSSE) filter

[9], [3], and the Maximum-Margin Correlation Filter (MMCF)

[5], [7]. We discuss only a representative sample of CFs,

but this approach is applicable to many more CF designs.

We discuss some methods to efficiently solve for the ZACF

designs in Section 5. In Section 6, we present experimental

results for a variety of applications, including face recognition,

Automatic Target Recognition (ATR), eye localization and

object detection. We conclude in Section 7.

2 RELATED WORK

There are a wide variety of applications for CFs in biometrics,

object detection, landmark detection, and action recognition.

For example, CFs are used for face recognition in [1]. A

deformable pattern matching method is coupled with CFs in

[2] to recognize human iris images. More recently, ocular

recognition has become of greater interest to the biometric

community, and CFs have been applied to this problem in

[20]. CFs have also been suggested for biometric key-binding

in [21]. Phase-only correlation methods have been used to

correlate the phase information in two images. Biometric

applications of these techniques include iris recognition [22],

as well as face, fingerprint, palmprint, and finger-knuckle

recognition [23], [24].

CFs have been used for ATR [5] and to track moving

objects in video [25], [9], [8]. Pedestrian detection has been

demonstrated in [26], [6]. CFs have been also used as local part

detectors. For example, [5], [13] uses CFs for eye localization

in images of human faces, and [3] uses CFs as the appearance

model for landmark localization in object alignment. CFs have

also proven useful for detecting and locating text strings for

document processing [27]. In [10] CFs have been used to

accurately localize video clips in time thereby dramatically

improving (computationally as well as performance wise)

video search and retrieval from a large video corpus. Recently
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Fig. 2. Overview of our proposed zero-aliasing correlation filters (ZACFs) approach. Conventional CF designs result in templates that are
non-zero for all values. This means that, during the optimization, the correlation between the template and the training images is in fact a
circular correlation. In our design, constraining the tail of the template using ZA constraints guarantees that the optimization step corresponds
to a linear correlation. This results in correlation planes that resemble the original design criteria–in this case, a sharp peak with low side-lobes.

[28] proposed a method to discriminatively learn bases of

exemplar correlation filters for accurate 3D pose estimation.

CFs have also been extended to videos and have been ap-

plied to detect and classify human actions [4], [29], [30], [31].

In [30], a motion model is combined with two-dimensional

CFs to classify human activities. The use of CFs is not limited

to pixels; they have been applied to work with feature vectors

such as optical flow [4], histogram of oriented gradient (HOG),

or scale invariant feature transform (SIFT) features [3], [32].

Despite all the work in CFs, the circular correlation problem

has been mostly ignored. This problem was initially observed

in [33], which proposed reformulating the popular MACE

filter [12] in the spatial domain to avoid circular correlation.

However, computation of the MACE filter in the spatial

domain is of much higher complexity than computation via the

frequency domain. Furthermore, there was never a proposed

frequency domain solution to handle the circular correlation

problem. More recently, [34] explored several methods to

reduce circular correlation effects. These methods use zero

padding and/or windowed training images to lessen the ef-

fects of circular correlation. One of these methods, originally

mentioned in [13], multiplies the training images by a cosine

window to reduce edge effects (this approach is explored in

greater detail in [34]). Windowing is undesirable, however,

because it fundamentally changes the content of the training

images. All of the methods discussed in [34] fall short, as they

do not eliminate circular correlation effects.

In practice, CFs are typically designed by zero-padding

training images (of dimension N ×M ) to a size of at least

(2N−1)×(2M−1) prior to taking the DFT since zero-padding

the input images will result in linear correlation. Although this

is true in the testing stage, it is not true in the training stage,

and as we will show in Section 3, it does not solve the aliasing

problem and results in a suboptimal CF design. In [17], we

introduced a new way to completely eliminate aliasing–namely

that the CF template must be explicitly constrained during

the CF design stage such that the template tail is set to

zero. By coupling these ZA constraints with zero-padding the

training images, the optimization metric corresponds to a linear

correlation, and the resulting CF template is the same as the

template we would get if we were to design the CF in the

spatial domain. In the next sections, we describe the problem

and our solution in detail.

3 THE CIRCULAR CORRELATION PROBLEM

In this section, we first introduce the main idea that is common

to most CF designs and then discuss the circular correlation

problem in these designs using the MACE filter [12] as an

illustrative example. For notational ease all the expressions

through the rest of this paper are given for 1-D signals with

K channels. Most prior CF designs were aimed at images

(i.e., gray scale values of pixels), but our formulations can

accommodate images as well vector features (e.g., HOG, SIFT

features) extracted from the images.

Vectors are denoted by lower-case bold (x) and matrices in

upper-case bold (X). x̂ ← FK(x) and x ← F−1
K (x̂) denotes

the Fourier transform of x and the inverse Fourier transform

of x̂, respectively, where ˆ denotes variables in the frequency

domain, FK() is the Fourier transform operator and F−1
K ()

is the inverse Fourier transform operator with the operators

acting on each of the K channels independently. Superscript
† denotes the complex conjugate transpose operation.

3.1 Correlation Filter Design

Let us assume that we train a filter using L training images

of size N . Typically, we train the filter h in the frequency

domain using DFTs (of size NF = N ) of the training images,

x̂l, for l = 1, . . . , L. Many CF designs can be interpreted

(see [6] for a circulant decomposition based interpretation

and motivation for CF design formulations) as a regression

problem optimizing the localization loss defined as the MSE

between an ideal desired correlation output gl for an input

image and the correlation output of the training signals with

the template1 (see [3] for details),

J(h) =
1

L

L
∑

l=1

∥

∥

∥

∥

∥

K
∑

k=1

xk
l ∗ h
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∥
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∥
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∥

2

2
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=
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∥

K
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2

2

= ĥ†D̂ĥ− 2ĥ†p̂+ Eg

1. We refer to the CF as a “template” in the time or spatial domain, and
as a “filter” in the frequency domain.
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where ∗ denotes the correlation operation, we use the Parse-

val’s theorem to express the MSE in the Fourier domain. Eg is

a constant which depends on the desired correlation response,

X̂
k†
l ĥk is the DFT of the correlation of the k-th channel of

the l-th training image with the corresponding k-th channel of

the CF template where the diagonal matrix X̂k
l contains the

vector x̂k
l along its diagonal and,

D̂ =
1

NFL







∑L
l=1 X̂

1
l X̂

1†
l · · ·

∑L
l=1 X̂

1
l X̂

K†
l

...
. . .

...
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l=1 X̂
K
l X̂
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K
l X̂
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(2)

p̂ =
1

NFL






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l=1 X̂

1
l ĝl

...
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K
l ĝl
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
, ĥ =


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ĥ1
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ĥK






, x̂l =







x̂1
l
...

x̂K
l







In addition to minimizing the localization loss in Eq. 1,

some CFs are constrained to produce pre-specified values at

the origin (known as correlation peak constraints) in response

to centered training images (this is equivalent to constraining

the dot product of the training images and the template).

min
ĥ

ĥ†D̂ĥ− 2ĥ†p̂ (3)

s.t. X̂†ĥ = u

In this case, X̂ (with no subscripts) is an NFK×L matrix with

columns x̂l, and u is the correlation peak constraint vector,

whose elements are usually set to 1 for positive class training

images and to 0 for negative class training images (if used).

This optimization problem results in a closed form solution

for the filter.

ĥ = D̂−1X̂
(

X̂†D̂−1X̂
)−1

u+ (4)
(

I− D̂−1X̂(X̂†D̂−1X̂)−1X̂†
)

D̂−1p̂

The conventional MACE filter [12] is designed to minimize

the average correlation energy (ACE, defined below)

ACE =
1

NFL

L
∑

l=1

K
∑

k=1

ĥk†X̂k
l X̂

k†
l ĥk (5)

of the entire correlation output (this is equivalent to setting

the desired correlation output gl to an all-zero plane and

equivalently setting p̂ to an all-zero vector) resulting in the

following conventional closed form solution for the MACE

filter.

ĥ = D̂−1X̂
(

X̂†D̂−1X̂
)−1

u (6)

This formulation results in correlation outputs exhibiting sharp

correlation peaks with low side-lobes, leading to good local-

ization.

However, there is a fundamental problem with this formu-

lation. The term X̂
k†
l ĥk in the ACE expression corresponds

to an element-wise multiplication of two DFTs. This term is

precisely the problem with the original MACE formulation.

When two DFTs are multiplied together in the frequency

domain, the result corresponds to a circular correlation in the

spatial domain. As shown in Fig.1, circular correlation is an

aliased version of the desired linear correlation. To attempt

to compensate for the effects of aliasing, the MACE filter

is sometimes trained [34] using zero-padded training signals,

such that the DFT size is NF = (2N −1). Such zero-padding

of training signals does not solve the circular correlation

problem. This is because, even when training signals are zero-

padded, the MACE template obtained using Eq. 6 is usually

nonzero for the full template of size NF . Therefore, the

multiplication of ĥ and the vectorized DFT of each training

signal always results in a circular correlation, regardless of

the number of zeros the training signals are padded with. For

the term X̂
k†
l ĥk to represent a linear correlation ĥk must be

constrained such that the tail of the spatial domain template

hk(n) is forced to zero. We recently [17] introduced the zero-

aliasing MACE (ZAMACE) filter design to eliminate this

aliasing problem. The mathematical details are presented in

Section 4.2 and extensions to other filter types are presented

in Sections 4.3 and 4.4.

3.2 Comparison of MACE and TDMACE Filters

We now explain the intuition and discuss several experiments

to illustrate the benefits of our approach using the ZAMACE

filter as an example. As a benchmark, we compute the time-

domain MACE (TDMACE), which is a template computed in

the time domain and is free of any aliasing (for a derivation

of this in 1-D, see [17]; a generalized spatial-domain MACE

template can be found in [33]; we use the terms “time

domain” and “spatial domain” interchangeably). As mentioned

previously, computing the MACE filter (or any other CF) in

the spatial domain is computationally expensive.

We begin with a 1-D example that uses ECG signals from

the MIT-BIH Arrhythmia Database [35]. In this case, we

have extracted 355 heartbeat cycles. Each signal is N = 301
samples long and represents a single heartbeat, which has been

segmented by a cardiologist expert based on the location of

the main peak.

We train MACE, TDMACE, and ZAMACE filters using a

set of L = 10 training signals. Here, we design CFs using

training signals from only one class. We desire a correlation

template of length N (the same size as the training samples).

As mentioned previously, training signals are typically zero-

padded to size NF ≥ 2N − 1 prior to taking the DFT.

However, although the training signals are now zero padded,

the conventional MACE filter design does nothing to ensure

that the resulting template is zero in its tail. In contrast, our

ZA approach (described more formally in Section 4) constrains

the optimization of the filter ĥ such that it is zero for the last

NF −N indices of the template h(n). When NF ≥ 2N − 1,

the circular correlation effects are completely eliminated.

To demonstrate this, we compare the MACE and the ZA-

MACE formulations while varying q (the amount of zero

padding). For the MACE formulation, we demonstrate two

methods. First, we train a MACE template of length NF =
N + q. Second, we train the same MACE template, but crop

it to length N . For the ZAMACE template, we obtain a

template of size NF = N + q. However, note that the last q

elements of this template are equal to zero because of the ZA
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Fig. 3. Comparison of the conventional MACE, TDMACE and
ZAMACE filters.

constraints. We correlate each template (in the time domain)

with the original training signals and compute the unaliased

ACE for each of the formulations. We use the term “unaliased

ACE” to make a distinction from ACE, defined in Eq. 5.

Unaliased ACE is the average correlation energy of the linear

correlations of the training samples and the template whereas

the ACE term in Eq. 5 is the average correlation energy of

the circular correlations. Note that a lower value of unaliased

ACE implies sharper correlation peaks, which results in better

pattern localization performance.

The results of this analysis are shown in Fig. 3a. First, note

that the unaliased ACE for the TDMACE is smaller than both

of the conventional frequency-domain MACE formulations for

all q values. This indicates that there is a problem with the

conventional MACE filter design. Next, note that the unaliased

ACE for both of the conventional MACE formulations does

not decrease as q increases, which indicates that simply zero

padding the training signals does not provide an adequate

solution to the aliasing problem. The ZA approach, however,

features an unaliased ACE that decreases considerably as

q increases. The unaliased ACE of ZAMACE becomes the

same as that of the TDMACE when NF ≥ 2N − 1, or

equivalently when q ≥ 300. We also show in Fig. 3b the

MSE between the (cropped) MACE/ZAMACE templates and

the TDMACE template. This cropping is necessary to ensure

that the MACE/ZAMACE templates are of the same length

as the TDMACE template. Note that the ZAMACE template

converges to the TDMACE template as the zero padding

approaches 300, whereas the conventional MACE filter differs

significantly from TDMACE filter even for q > 300. There-

fore, the ZAMACE formulation can be interpreted as a bridge

between the original MACE formulation and the TDMACE

formulation. With no zero padding, there are no ZA constraints

and ZAMACE is the same as MACE; with zero-padding

q ≥ N−1, ZAMACE is the same as TDMACE, and there are

no circular correlation effects. We repeated this experiment in

2-D, training both MACE and ZAMACE filters with three face

images of the same person in the AT&T Database of Faces

(formerly the ORL Database of Faces) [36]. We downsampled

the images to size 28 × 23 pixels for computational reasons.

We observed the same trend as in the 1-D case–namely, the

unaliased ACE decreases as zero padding increases in each

dimension. We show the full (NF×MF = 55×45) MACE and

ZAMACE templates in Fig. 4. We show example correlation

outputs obtained from these MACE and ZAMACE templates

in Fig. 5. Note that the correlation output has lower correlation

energy for the ZA case than it does for the conventional case.

The ZAMACE filter yields an output that is more consistent

with the original MACE filter design criteria.
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Fig. 5. Example correlation outputs for one of the training images.
Note that the ZAMACE filter yields an output that is much sharper
than the original MACE filter design.

4 ZERO-ALIASING CORRELATION FILTERS

In this section, we present the mathematical details of ZACFs

and demonstrate how ZA constraints can be incorporated into

different CF designs. From an optimization perspective we can

categorize most CFs into three groups: equality constrained

CFs, unconstrained CFs, and inequality constrained CFs. The

MACE filter is an example of an equality constrained CF

where the dot products between the training images and the

template are constrained to equal some pre-specified values.

The MOSSE filter [9], [3] is an example of an unconstrained

filter that minimizes the localization loss between a desired

correlation output shape and the actual correlation output.

Finally, MMCF [5], [7] is an inequality constrained filter

that leverages ideas from support vector machines (SVMs) to

achieve better recognition. Although we discuss only a small

subset of CFs, similar derivations can be obtained for other

CFs.
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4.1 Zero-Aliasing Constraints

In the ZACF formulation, we minimize the localization loss

while enforcing constraints that force the template’s tail to be

equal to zero. We refer to these constraints as ZA constraints,

because they eliminate the aliasing effects caused by circular

correlation. For example, for a K-channel template h(n), we

can express these constraints as hk(n) = 0 for n ≥ N

for every k-th channel. Recall that the time domain template

hk(n) is related to the frequency domain filter Hk(r) through

the inverse-DFT as,

hk(n) =
1

NF

NF−1
∑

r=0

Hk(r)e
j2πrn

NF (7)

To satisfy the ZA constraints, we need to satisfy the following

set of linear equations,

hk(n) =
1

NF

NF−1
∑

r=0

Hk(r)e
j2πrn

NF = 0 for N ≤ n < NF (8)

This can be written in matrix-vector notation as

Ẑ†ĥk = 0 (9)

where

Ẑ† =











1 ej2π(1)(N)/NF · · · ej2π(NF−1)(N)/NF

1 ej2π(1)(N+1)/NF · · · ej2π(NF−1)(N+1)/NF

...
...

. . .
...

1 ej2π(1)(NF−1)/NF · · · ej2π(NF−1)(NF−1)/NF











(10)

Note that the Ẑ† is a matrix of size (NF − N) × NF , and

0 is a zero vector of length NF − N . Aggregating the ZA

constraints from all the K-channels of the signal we have,

Â†ĥ = 0 (11)

where Â† = IK ⊗ Ẑ†, the kronecker product between Ẑ† and

an identity matrix IK . These constraints in Eq. 11 are the ZA

constraints that characterize ZACFs.

4.2 ZAMACE

In Section 3.1, we discussed the formulation of the MACE

filter. In the ZAMACE formulation, we modify the MACE

formulation to include the ZA constraints, i.e., we minimize

the localization loss while enforcing both the peak constraints

in Eq. 4 and ZA constraints in Eq. 11 that force the template’s

tail to be equal to zero.

min
ĥ

ĥ†D̂ĥ− 2ĥ†p̂ (12)

s.t. X̂†ĥ = u

Â†ĥ = 0

This optimization problem results in a closed form solution

for the new ZAMACE filter given by,

ĥ = D̂−1B̂
(

B̂†D̂−1B̂
)−1

k+ (13)
(

I− D̂−1B̂(B̂†D̂−1B̂)−1B̂†
)

D̂−1p̂

where

B̂ =

[

X̂

Â

]

, k =

[

u

0

]

The ZAMACE expression ĥ = D̂−1B̂
(

B̂†D̂−1B̂
)−1

k in

[17] is obtained by setting the desired correlation outputs gl to

all-zero plane which leads to p̂ = 0. The size of the filter, ĥ, in

Eq. 13 is the same as in Eq. 6. This means that the ZAMACE

filter requires no additional storage, and for testing it requires

no additional computation or memory than the MACE filter.

Note that the OTSDF filter [16] is a CF that is very similar

to the MACE filter. In the OTSDF formulation, the matrix D̂

is replaced by T̂ = D̂+ δI, where I is an identity matrix and

δ > 0. The inclusion of the identity matrix is to improve noise

tolerance.

4.3 ZAMOSSE

The MOSSE filter [9], [3], [32] is an unconstrained filter that

minimizes the localization loss, defined in Eq. 1, between

the correlation of the CF template with the training signal(s)

and the desired correlation output(s). For example, the desired

correlation output in the spatial domain could take on a value

of one at the location of a positive class signal and zeros else-

where. Similar filters that specify a desired correlation output

are found in [13], [37], [15], and [21]. The MOSSE filter

design is formulated as the following optimization problem,

min
ĥ

ĥ†D̂ĥ− 2ĥ†p̂ (14)

which results in the following closed-form expression for the

filter,

ĥ = D̂−1p̂ (15)

This expression is written in matrix-vector notation, but is

equivalent to the expression in [9] for a single channel signal.

Again, this formulation does not account for the aliasing

effects due to circular correlation. To remove the effects of

circular correlation, we need to instead optimize Eq. 14 subject

to the ZA constraints given in Eq. 11. The ZAMOSSE filter

design results in the following closed form expression,

ĥ = ∆
D̂
D̂−1p̂ (16)

where ∆
D̂

= I − D̂−1Â(Â†D̂−1Â)−1Â†. In our MOSSE

and ZAMOSSE filter implementation, we replace D̂ with T̂ =
D̂+ δI as described earlier.

4.4 ZAMMCF

The Maximum-Margin Correlation Filter was recently intro-

duced in [5], [7]. This filter combines the localization ability

of the CFs and the generalization capability of large-margin

based classifiers like Support Vector Machines (SVMs). Tradi-

tionally, constrained CF designs (e.g., MACE) are constrained

such that the dot product of a training image and the CF

template is set to a specific value. In the MMCF formulation,

however, this hard equality constraint is relaxed and replaced

with inequality constraints for maximizing the margin of
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separation between the positive and negative class training

samples.

min
ĥ

ĥ†T̂ĥ− 2ĥ†p̂+ 2C1T ξ (17)

s.t. yl

(

x̂
†
l ĥ+ b

)

≥ ylul − ξl

ξl ≥ 0

where T̂ = D̂ + δI as described before, the vector ξ =
[ξ1, . . . , ξL]

T is a real vector of slack variables that penalize

training images that are on the wrong side of the margin (as

in the SVM formulation), C > 0 is a trade-off parameter, yl is

the class label (1 for positive class and −1 for negative class),

and ul is the minimum peak magnitude which is typically set

to 1. As shown in [38], the filter may be expressed as

ĥ = T̂−1p̂+ T̂−1X̂Ya (18)

where Y is a diagonal matrix with the class labels yl along

the diagonal, and a is the solution of the dual problem,

max
0≤a≤C1

aTMa+ aTd (19)

where

M = −YX̂†T̂−1X̂Y

d = 2Y(u− X̂†T̂−1p̂)

To obtain the ZA formulation of MMCF (ZAMMCF), we add

the ZA constraints, Eq. 11, to the MMCF formulation, Eq. 17.

The solution to this problem can be expressed as,

ĥ = T̂−1(p̂+ X̂Ya+ Âω) (20)

where ω = −(Â†T̂−1Â)−1Â†(T̂−1p̂+ T̂−1X̂Ya) and a is

the solution of the dual problem,

max
0≤a≤C1

aTMa+ aTd (21)

where

M = −YX̂†∆
T̂
T̂−1X̂Y

d = 2Y
(

u− X̂†∆
T̂
T̂−1p̂

)

∆
T̂

= I− T̂−1Â(Â†T̂−1Â)−1Â†

4.5 Extension to Multi-Dimensional Signals

Extending the ZA formulation to multi-dimensional signals is

a matter of determining the matrix Â such that Â†ĥ = 0

when ĥ is a vectorized M -D DFT. We illustrate the 2-D ZA

constraints in Fig. 6. Here, the shaded region of the template

must be set to zero via ZA constraints. We can express h (the

vectorized template) as

h = Wĥ (22)

where the matrix W accomplishes a 2-D inverse-DFT. Note

that we only wish to constrain some of the entries of vector

h to zero. The rows of matrix Â† are taken from the rows of

matrix W corresponding to the elements of h that we wish to

constrain. Details may be found in [17]. Note that matrix Â

is considerably larger in 2-D thereby posing a computational

challenge for numerically computing ZACFs.

N

M

NF

MF

Fig. 6. Illustration of the ZA constraints required for the 2-D
formulation of the ZAMACE template.

5 COMPUTATIONAL CONSIDERATIONS

In this section, we discuss the computational challenges that

arise in the design of ZACFs. Although we have analytical

solutions for ZACFs, designing the filter can become computa-

tionally intensive (memory wise), especially for large training

images. Note that applying the resulting ZACF to test data

requires no additional computation or memory compared to

traditional CFs. The computational considerations presented

in this section are only for training the CF. In this section, we

present two different methods we have developed to overcome

the computational challenge and efficiently design ZACFs.

5.1 Reduced-Aliasing Correlation Filters

Analytical solutions for ZACFs typically result in greater com-

putational complexity than their conventional counterparts. To

illustrate this, we use the MACE filter as an example. In the

original MACE formulation, the matrix X̂†D̂−1X̂ must be

inverted. This is usually of low computational complexity, as

the size of this matrix (L × L) is determined only by the

number of training images, L, which is usually much smaller

than the number of pixels in the training images. For the

ZAMACE case, however, we must invert the matrix B̂†D̂−1B̂,

which is of size (L + KNF − KN) × (L + KNF − KN),
which is usually much larger than the MACE case. Note

that if we reduce the number of ZA constraints (NF − N ),

we can reduce the size of this matrix. We have explored

several ways to do this. First, we explored constraining only

a portion of the template tail based on the observation that

more energy is usually contained in the main portion of the

template. However, this technique is not nearly as successful

as simply reducing the DFT size (N < NF < 2N − 1) and

constraining the entire tail. Doing so means that there is still

aliasing due to circular correlation; however, we have noticed

that this aliasing is significantly reduced, leading to very good

results while improving the computational requirements. We

refer to this method as the reduced-aliasing correlation filter

(RACF). RACFs were inspired by our earlier experiments (see

Fig. 3a), in which we noticed that the unaliased ACE actually

decreases rapidly as zero-padding increases. We evaluate the

RACF method in Section 5.3.

5.2 Proximal Gradient Descent Method

Although we have derived closed-form solutions for some

ZACFs, sometimes implementing these expressions may be

impractical from a computational and memory perspective. An
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alternative solution is to use an iterative algorithm to solve

for the ZACF. One iterative method to do this is using the

proximal gradient descent method [39]. We have developed

this method for unconstrained filters (ZAMOSSE), equality

constrained filters (ZAMACE/ZAOTSDF) and inequality con-

strained filters (ZAMMCF). The key idea to efficiently opti-

mize the ZACF formulations is to impose the ZA constraints

directly in the spatial domain instead of forming the matrix

Â as in the closed form solution. Imposing the constraints in

the spatial domain can be done by a simple projection of the

template onto the space Ω whose tail is set to zero. We define

PΩ(x) as the operator which projects x onto the set Ω i.e.,

PΩ(x) is the operator that sets the tail of x to zero. Further,

PZ(x) and PC(x) are defined as complementary operators

which zero-pad and crop the signal by an appropriate amount

respectively.

As described earlier, most CF designs optimize the lo-

calization loss, f(ĥ) = ĥ†T̂ĥ − 2ĥ†p̂, whose gradient is

∇f(ĥ) = 2T̂ĥ − 2p̂. Standard gradient descent [40] finds

an optimal solution ĥopt by choosing an initial solution, ĥ0

and iteratively reducing the cost function f(ĥ). Each iteration

is computed as a function of the previous solution,

ĥt+1 = ĥt − ηt∇f
(

ĥt

)

(23)

where ηt is the step size at iteration t. However, standard

gradient descent does not allow for the ZA constraints to be

imposed on the filter. Therefore, we use proximal gradient

descent [39] to find the optimal solution while satisfying the

ZA constraints,

ĥt+1 = prox
(

ĥt − ηt∇f
(

ĥt

))

(24)

Here, the prox() operator imposes constraints on the filter.

For unconstrained filters (e.g., ZAMOSSE), the prox()
operator (see Fig. 7a and Algorithm 1) transforms the filter up-

date F−1
(

ĥt − ηt∇f
(

ĥt

))

→ ht+ 1
2

into the spatial domain

and sets the template’s tail to zero i.e., ht+ 1
2
← PΩ

(

ht+ 1
2

)

. It

then transforms the resulting template back into the frequency

domain to obtain ĥt+1 ← F
(

ht+ 1
2

)

. The full algorithm is

described in Algorithm 1.

For the equality constrained case (e.g. ZA-

MACE/ZAOTSDF), the prox() operator contains

two steps (see Fig. 7b and Algorithm 2). First, the

filter update is transformed into the spatial domain

F−1
(

ĥt − ηt∇f
(

ĥt

))

→ ht+ 1
2

and the template’s

tail is set to zero i.e., ht+ 1
2
← PΩ

(

ht+ 1
2

)

. For the second

step, we extract the main portion of the template and vectorize

it i.e., h
#

t+ 1
2

← PC

(

ht+ 1
2

)

. We now seek to update h
#

t+ 1
2

by h∆ such that the desired peak constraints are satisfied and

that is closest to the current template h
#
t ,

XT
(

h
#

t+ 1
2

+ h∆

)

= u (25)

where u is a vector containing the desired peak constraints

and X contains the training signals in the spatial domain along

0

F
−1

F

MF

NF

M

N

(a) Unconstrained and Inequality Constrained Case

0

+ =

h
# h∆

F
−1

F

N

M

NM

MF

NF

M

N

(b) Equality Constrained Case

Fig. 7. Illustration of the proximal step, which is performed in the
spatial domain. All DFTs and Inverse-DFTs are in 2-D.

each column. We solve for h∆ by solving the following least

squares problem,

min
h∆

hT
∆h∆ (26)

s.t. XTh∆ = u−XTh
#

t+ 1
2

which results in h∆ = X(XTX)−1
(

u−XTh
#

t+ 1
2

)

. Next,

we form the vector h
#

t+ 1
2

+h∆, zero-pad it by the appropriate

amount to get ht+1 ← PZ

(

h
#

t+ 1
2

+ h∆

)

, and map it back to

the Fourier domain ĥt+1 ← F (ht+1). The full algorithm is

described in Algorithm 2.

For the inequality constrained case (e.g., ZAMMCF), since

the hinge loss is non-differentiable, gradient descent cannot be

directly used. While many sub-gradient descent methods have

been developed for the hinge loss, we empirically observed

that a simple sub-gradient descent with the proximal operator

had poor convergence properties. Therefore, we instead use

the differentiable squared hinge loss and solve the following

optimization problem that is closely related to the formulation

in Eq. 27,

min
ĥ

λ

2
ĥ†T̂ĥ+

1

2L

L
∑

l=1

[

1− yl

(

x̂
†
l ĥ+ b

)]2

+
(27)

s.t. Â†ĥ = 0

where λ = 1
C . Again we adopt accelerated gradient descent

along with the proximal step after each iteration to solve for

the filter. The gradient of this objective function is,
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∇f(ĥ) = λT̂ĥ−
1

L

∑

i∈Ωsv

yix̂i

(

1− yi

(

ĥ†x̂i + b
))

(28)

where the support vector set Ωsv is defined as,

Ωsv =
{

i ∈ (1, . . . , n)
∣

∣

∣
yi

(

ĥ†x̂i + b
)

< 1
}

We estimate the step-size ηt for gradient descent by exact line

search i.e.,

min
η

f
(

ĥt + η∇f
(

ĥt

))

(29)

which we solve by a 1-D Newton method. The full algorithm

is described in Algorithm 3.

Algorithm 1 Accelerated Proximal Gradient Descent for

Unconstrained Filters (ZAMOSSE).

Compute ĥconv (conventional CF solution)

Initialize v̂0 ← prox(ĥconv) and ŵ0 ← prox(ĥconv)
repeat

∇f(ŵt) = 2T̂ŵt − 2p̂
ηt ← exact line search

v̂t+1 = prox (ŵt − ηt∇f(ŵt))

ŵt+1 = v̂t+1 +
(

t−1
t+2

)

(v̂t+1 − v̂t)

until
|f(v̂t+1)−f(v̂t)|

|f(v̂t)|
< ε

Output ĥ← v̂t+1

Function prox(ĥ)

1: h← F(ĥ)
2: h← PΩ(h)
3: ĥ← F−1(h)

Algorithm 2 Accelerated Proximal Gradient Descent for

Equality Constrained Filters (ZAMACE and ZAOTSDF).

Compute ĥconv (conventional CF solution)

Initialize v̂0 ← prox(ĥconv) and ŵ0 ← prox(ĥconv)
repeat

∇f(ŵt) = 2T̂ŵt − 2p̂
ηt ← exact line search

v̂t+1 = prox (ŵt − ηt∇f(ŵt))

ŵt+1 = v̂t+1 +
(

t−1
t+2

)

(v̂t+1 − v̂t)

until
|f(v̂t+1)−f(v̂t)|

|f(v̂t)|
< ε

Output ĥ← v̂t+1

Function prox(ĥ)

1: h← F(ĥ)
2: h← PΩ(h)
3: h# ← PC(h)
4: h∆ = X(XTX)−1(u−XTh#)
5: h# ← h# + h∆

6: h# ← PZ(h)
7: ĥ← F−1(h)

Algorithm 3 Accelerated Proximal Gradient Descent for

Inequality Constrained Filters (ZAMMCF).

Compute ĥconv (any conventional CF solution)

Initialize v̂0 ← prox(ĥconv) and ŵ0 ← prox(ĥconv)
repeat

Ωsv ←
{

i ∈ (1, . . . , n)
∣

∣

∣

[

1− yi(ŵ
†
kx̂i + b)

]

< 0
}

∇f(ŵk) = λT̂ŵk −
1
L

∑

i∈Ωsv
yix̂i(1− yi(ŵ

†
kx̂i + b))

ηt ← exact line search

v̂t+1 = prox (ŵt − ηt∇f(ŵt))

ŵt+1 = v̂t+1 +
(

t−1
t+2

)

(v̂t+1 − v̂t)

until
|f(v̂t+1)−f(v̂t)|

|f(v̂t)|
< ε

Output ĥ← v̂t+1

Function prox(ĥ)

1: h← F(ĥ)
2: h← PΩ(h)
3: ĥ← F−1(h)

Our proximal gradient descent approach ensures that the

ZA constraints (and peak constraints, for constrained filters)

are satisfied. This is done in the spatial domain, rather than

forming matrix Â (or matrix B̂, for the constrained case) as

in the closed form solution. This is advantageous because we

save on the memory needed to compute and store Â (or B̂)

and the subsequent computational resources needed to solve

large systems of equations. The result is a memory-stable, low

complexity solution that allows for fast, efficient and scalable

computation of ZACFs.

5.3 Computational Experiments

To demonstrate the benefits of RACF and the proximal gra-

dient descent methods, we perform a computational analysis

in this section (see Section 6 for accuracy comparisons) to

compare both methods to the closed-form ZACF implemen-

tation. For RACF, we pad with a number of zeros equal

to 10% or 25% of the training image size, and refer to

these results as RACF-10% and RACF-25%, respectively. For

the proximal gradient method, we compute the step size ηt
via exact line search. We initialize the filter (ĥ0) as the

conventional filter design subjected to the prox() operator. We

use a stopping condition
|f(v̂k)−f(v̂k−1)|

|f(v̂k−1)|
< 10−10 to terminate

the optimization. In this experiment, we used a training size

of 9 images from the AT&T (ORL) Face Dataset [36]; we

vary the resolution and crop the training images so that they

are square. The platform for this experiment was a desktop

running Matlab 2011a with Windows 7, an Intel Core i7-2600

CPU (3.4 GHz), and 16 GB of RAM. We show the results of

our experiment in Fig. 8. We only compute the closed form

solution for a resolution up to 50 × 50, as this is near the

memory limit of our machine. Note that, while the fastest

method is RACF-10%, we will show in Section 6 that RACF-

25% will perform better from a recognition performance

perspective. However, recognition performance is dependent

on the image size and the training set, so experimentation is
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needed before choosing the amount of padding used for RACF.

A downside of the RACF method is that it can still require

a large amount of memory for larger pad sizes. Therefore,

we prefer the proximal gradient method because it is more

efficient from a memory perspective. In the next section,

we show recognition performance on the AT&T/ORL dataset

using both methods to illustrate these points further.
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Fig. 8. Computational times for filter design comparing RACF and
the proximal gradient method compared to a closed form solution.
The “training image size" on the horizontal axis refers to N where
the training image size is N ×N .

6 RECOGNITION PERFORMANCE

In this section, we report recognition performance of ZACFs.

We emphasize that the ZA constraints introduced in this

paper are a fundamental and significant improvement to the

formulation of CFs. We have observed that ZACFs consis-

tently perform better than their original formulation (aliased)

counterparts. This is because the original CF designs did not

account for circular correlation and are fundamentally flawed.

This paper’s focus is to illustrate the performance improvement

that is realized by adding ZA constraints to CF designs, and

not to compare different types of CFs to each other. Further,

we are also not claiming that CFs are the best approach for

all object recognition problems. To investigate the performance

of ZACFs, we apply them to four types of pattern recognition

tasks, namely face recognition, automatic target recognition

(ATR), eye localization and object detection.

6.1 Face Recognition

We apply CFs to two different face recognition datasets: the

AT&T (ORL) Database of Faces [36] and the face recognition

grand challenge (FRGC) dataset [41].

6.1.1 AT&T Database of Faces

The AT&T Database of Faces (formerly the ORL Database of

Faces) [36] contains face images of size 112× 92. There are

40 subjects with 10 images each. We test using a leave-one-

out cross validation approach. For each experiment, 9 training

images were used to train one CF for each subject. These filters

were then tested on the remaining image for all subjects. This

resulted in a total of 40 test images (one from each class) that

were tested with 40 filters each, for a total of 1600 correlations

per cross validation step. This was repeated 10 times. For each

correlation output, we calculate peak to correlation energy

(PCE), which is a measure of peak sharpness [42]. We perform

classification on each of the test images and compute the rank-

1 ID rate. We compute the ZACFs in several ways: 1) closed

form solution, 2) accelerated proximal gradient descent, and 3)

various versions of the RACF (using different amounts of zero-

padding). The purpose of this comparison is to demonstrate the

effectiveness of the computational solutions in Section 5. Note

that computing the closed form solution is extremely difficult

and requires many hours on high-end computers. Therefore we

have not done an exhaustive comparison on every possible set

of parameters available to each filter formulation. The results

of our validation for the MACE, OTSDF, MOSSE, and MMCF

filters are shown in Table 1. We have used a delta function for

the desired correlation output for MOSSE and MMCF.

We observe that the ZACF outperforms the baseline (con-

ventional) CFs. Note in Table 1 that the proximal gradient

gives recognition performance close to that from the closed

form solution. This is also true for RACF provided that the

amount of zero-padding, q, is sufficiently large.

6.1.2 FRGC

The FRGC dataset [41] contains face images of resolution

128 × 128. We use 410 subjects from the test portion of the

data, removing subjects with less than 8 images per subject.

For the data we use, the number of images from each subject

varies from 8 (minimum) to 88 (maximum) with a mean of

39 images per subject. We form three training and test sets

by randomly selecting 25% of each class for training with

the remaining 75% used for testing. We then build one CF

per subject and apply every CF to every test image. Like

the ORL dataset, we present our results in terms of equal

error rate (EER) and Rank-1 ID rate in Table 2. Due to

the training image size, we compute the ZACF with the

accelerated proximal gradient approach for OTSDF, MACE,

MOSSE, and MMCF. In the table, we refer to these results

simply as “ZACF” for simplicity. As in the ORL experiments,

we use a delta function for the desired correlation output, if

required. Note that each ZACF achieves both a higher Rank-1

ID and a lower EER than the corresponding baseline filter.

TABLE 2. Performance Comparison of Baseline CFs and ZACFs on
the FRGC Dataset

Baseline CF ZACF

OTSDF
EER 2.43% 1.79%

Rank-1 ID 93.23% 94.95%

MACE
EER 15.23% 9.46%

Rank-1 ID 52.73% 78.98%

MOSSE
EER 7.35% 5.02%

Rank-1 ID 86.87% 93.78%

MMCF
EER 2.52% 1.80%

Rank-1 ID 91.96% 94.52%

6.2 ATR Algorithm Development Image Database

We investigate vehicle recognition (i.e., simultaneous classifi-

cation and localization) using a set of infrared images (frames
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TABLE 1. Performance Comparison of Baseline CFs and ZACFs on the ORL Dataset

Baseline CF ZACF
(closed form)

ZACF
(proximal gradient)

RACF
(p = 15)

RACF
(p = 20)

RACF
(p = 25)

RACF
(p = 30)

OTSDF
EER 10.89% 7.54% 7.65% 11.75% 8.45% 7.21% 7.5%

Rank-1 ID 83.75% 89.5% 89.5% 70.75% 81% 85.75% 87.75%

MOSSE
EER 11.75% 7.94% 7.94% 12.25% 9.25% 8.75% 8.5%

Rank-1 ID 84.25% 88.25% 88% 72.75% 83% 85.75% 87.5%

MMCF
EER 11.73% 8% 8.21% 12% 8.930% 8.75% 8.5%

Rank-1 ID 84.25% 88.5% 88.3% 73% 83% 86% 87.5%

from videos) from the ATR Algorithm Development Image

Database [43]. This database contains infrared videos of

512×640 pixels/frame of eight vehicles (one per video), shown

in Fig. 9, taken at multiple ranges during day and night at 30

fps. Note in Fig. 9 that some of the vehicles have very similar

appearance, making the classification task challenging. In the

dataset, these vehicles are driven at ∼ 5 m/s, making a full

circle of diameter of about 100 m, therefore exhibiting 360◦

of azimuth rotation. Each video is 1 minute long, allowing the

vehicle to complete at least one full circle. An example frame

is shown in Fig. 10. Note that the low quality frame and the

general background makes the recognition task challenging.

We design one template per vehicle (the template size was

(a) Pickup (b) SUV (c) BTR70 (d) BRDM2

(e) BMP2 (f) T72 (g) ZSU23-4 (h) 2S3

Fig. 9. Example images from different classes of vehicles.

small enough to easily calculate the closed form ZACFs) to

classify the vehicle in the presence of 360◦ azimuth variation.

We select 20 positive-class images per filter (manually cropped

from the corresponding frames, N×M = 40×70) and 80 non-

overlapping background images as negative class images for

training. We select 200 full frames for testing, verifying that

none of the testing frames were used in training. For testing,

we correlate the 8 templates (one per vehicle) with each test

image. For each correlation plane, we select the highest value,

compute PCE, and assign the test image to the class that gives

the highest PCE. If it is the correct class, we declare it as

correctly classified. We declare correct localization when the

location of the peak from the true class filter is within 20 and

35 pixels (i.e., half the size of the template) of the ground truth

location in the vertical and horizontal directions, respectively.

Finally, we declare a correct recognition when there is both

correct classification and correct localization.

Table 3 shows the average classification, localization, and

recognition percentages of both the conventional CF and

ZACF. Dalal and Triggs [44] proposed cross-correlating the 2-

D template with full training frames, adding the false positives

as negative class training images, and retraining the template.

We show our results after retraining in Table 4. We observe

Fig. 10. Vehicle “Pickup” and background

that retraining helps all filters, but especially the MMCF

filter, whose inequality constraints allow unlimited number

of training images from two classes. The most important

observation is that ZACFs always perform better than or about

the same as traditional CFs in classification, localization, and

recognition. Note that we treat each frame independently of

other frames, i.e., although using a tracker would improve

results, the purpose of these experiments is to compare the

performance of conventional CFs and ZACFs without addi-

tional help from a tracker.

TABLE 3. CF Recognition Performance without Retraining, ATR
Algorithm Development Image Database

Classification Localization Recognition

Base ZA Base ZA Base ZA

MACE 40.0% 51.9% 84.1% 88.9% 36.2% 47.5%

OTSDF 53.6% 62.1% 90.3% 90.3% 52.4% 57.4%

MOSSE 29.7% 32.3% 64.5% 78.1% 26.1% 30.6%

MMCF 51.1% 57.0% 87.7% 90.0% 49.6% 52.6%

TABLE 4. CF Recognition Performance with Retraining, ATR Algo-
rithm Development Image Database

Classification Localization Recognition

Base ZA Base ZA Base ZA

MACE 46.2% 57.7% 85.1% 89.1% 42.7% 51.9%

OTSDF 59.9% 62.3% 90.7% 90.0% 58.1% 58.1%

MOSSE 31.9% 33.4% 76.5% 84.4% 31.1% 32.0%

MMCF 63.9% 74.3% 95.3% 96.1% 63.2% 73.5%

6.3 Eye Localization

Accurate localization of the eyes in face images is an impor-

tant component of face, ocular, and iris recognition. In this
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TABLE 5. Eye Localization Performance (%)

Eye MOSSE ZAMOSSE MMCF ZAMMCF

Right 94.66 97.24 95.01 97.14

Left 96.23 96.30 96.44 97.16

experiment we consider the task of accurately determining the

location of the left and the right eye given a bounding box

around a face obtained from a face detector. Since a good

face detector makes eye localization overly simple, following

the experimental setup outlined in [13], we make the problem

more challenging by introducing errors in face localization. We

first center the faces obtained using the OpenCV face detector

to produce 128× 128 images with the eyes centered at (32.0,

40.0) and (96.0, 40.0). We then apply a random similarity

transform with translation of up to ±4 pixels, scale factor

of up to 1.0 ± 0.1, and rotations of up to π
16 radians. We

used the FERET [45] database for this task, which has about

3400 images of 1204 people. We randomly partitioned the

database with 512 images used for training, 675 for parameter

selection by cross-validation, and the rest for testing. The CFs

are compared by evaluating the normalized distance defined

as,

D =

∥

∥

∥
P − P̂

∥

∥

∥

‖Pl − Pr‖
(30)

where P is the ground truth location, P̂ is the predicted

location, and Pl and Pr are the ground truth locations of

the left and the right eye, respectively. The point D = 0.1
corresponds to detecting an object that is approximately the

size of a human iris. We train MOSSE, MMCF, ZAMOSSE

and ZAMMCF filters using 64×64 image patches centered at

the left and right eye regions. We note that the MACE/OTSDF

design is not suitable for this task since the number of training

images is greater than the degrees of freedom in the filter. In

such cases MACE/OTSDF designs result in overdetermined

linear system and cannot be solved for. Therefore for this

experiment we do not show results with MACE and OTSDF

designs. We use the proximal gradient descent based algorithm

to learn the ZA versions of MOSSE and MMCF. We evaluate

the eye localization performance of the CF templates by

searching over the entire face image i.e., the scenario where the

approximate eye location is not known a-priori. We average the

results over 5 different runs with random partitions for training

and testing and random similarity transforms. We compare the

eye localization performance as a function of D in Fig. 11 and

Table 5 shows the performance of the MOSSE and MMCF

filters along with their ZA versions at the operating point

D = 0.1. The filters, while producing a strong response for

the correct eye, are sometimes distracted by the wrong eye or

other parts of the face. Note that the ZA filters provide a higher

localization accuracy than the filters with aliasing. The absence

of aliasing results in lower noise levels in the correlation

outputs thereby resulting in better localization performance.

6.4 Object Detection

We evaluated various CF and ZACF designs for pedestrian

detection on the INRIA Pedestrians [44] dataset and the
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Fig. 11. Eye localization performance of the left (left) and right
(right) eye, respectively, as a function of the inter-ocular distance for
the different CF designs. We show the mean performance across five
random runs along with the error bars. The ZA filters outperform
those designed without explicitly accounting for aliasing.

ETHZ Shapes dataset [46]. Instead of mining for hard neg-

atives, as is commonly done, we simply consider a large

set of negative windows following the protocol in [6]. For

this set of experiments we use vector-valued HOG feature

representation [44], i.e., we have K = 36 different feature

channels. The ETHZ Shapes dataset consists of 5 categories

(Mug, Bottle, Swan, Giraffe and Apple Logo) each consisting

of between 22 and 45 positive samples. We compare the

following different CFs: Vector Correlation Filter (VCF) [3],

Maximum-Margin Vector Correlation Filter (MMVCF) [7],

Circulant Decomposition (CD) [6] based CF, and the ZA

filters ZAVCF (Eq. 16), ZAMMVCF (Eq. 27). In Table 6 we

present the average precision for the INRIA dataset and the

mean average precision over all the ETHZ Shapes and Fig.

12 and Fig.13 show the precision-recall curves for the INRIA

pedestrian dataset and each object in the ETHZ Shapes dataset

respectively. We note that among single linear template based

methods, ZAMMVCF results in the best performance on both

these datasets.

TABLE 6. Object Detection: Average Precision (%)

Dataset VCF [3] ZAVCF MMVCF [7] ZAMMVCF CD [6]

INRIA 79.79 80.81 83.19 84.07 79.56

ETHZ 76.74 76.70 78.33 80.10 78.16

7 CONCLUSIONS

In this paper, we proposed and investigated a fundamental and

significant advancement to the design of CFs. Existing CF

designs that are formulated in the frequency domain do not

explicitly account for the fact that multiplication of two DFTs

in the frequency domain corresponds to a circular correlation

in the spatial domain. As a result, existing CF designs do not

actually optimize their intended cost functions. In this paper,

we present a solution to this problem (ZACFs) that completely

removes circular correlation effects from CF designs. While

we have explicitly shown new filter derivations for several pop-

ular filter designs, this approach can be used with many more
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Fig. 13. Comparison of various correlation filter designs for object shape detection on the ETHZ Shapes dataset.
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Fig. 12. Comparison of various correlation filter designs for pedes-
trian detection on the INRIA Pedestrian dataset.

CFs and with other approaches. To address the computational

challenges caused by the ZA constraints we introduced the

RACF designs as an approximate solution as well as proximal

gradient descent based algorithms for exactly solving for the

various ZACFs. We have shown that our methods eliminate

aliasing and lead to significantly better results across the board

for many different CFs and for different datasets.
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