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Abstract—We describe a template-based framework to bind class-specific information to a set of image patterns and retrieve
that information by matching the template to a query pattern of the same class. This is done by mapping the class-specific
information to a set of spatial translations which are applied to the set of image patterns from which a template is designed taking
advantage of the properties of correlation filters. The bound information is retrieved during matching with an authentic query by
estimating the spatial translations applied to the images that were used to design the template. In this paper we focus on the
problem of binding information to biometric signatures as an application of our framework. Our framework is flexible enough to
allow spreading the information to be bound over multiple pattern classes which in the context of biometric key-binding enables
multi-class and multi-modal biometric key-binding. We demonstrate the effectiveness of the proposed scheme via extensive
numerical results on multiple biometric databases.
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1 INTRODUCTION

A MONG several approaches for image classification,
template-based methods, where a single template is

designed from a set of gallery images representative of the
pattern class, have been popular. Usually these templates
are stored in a database along with any class-specific infor-
mation and classification is done by matching this template
to the query pattern. However in some applications (e.g.,
security related), we want this class-specific information
(e.g., a cryptographic key corresponding to that class) to be
released only upon a successful match between the template
and the query pattern and as such we want the process of
information release to be an integral part of matching.

In this paper we describe a framework that allows us to
securely bind class-specific information to image patterns
and retrieve it only upon a successful match between a
query pattern and the corresponding template. A natural
application for our framework is biometric authentication
(we use this application throughout this paper as an example
to evaluate the effectiveness of the proposed framework),
where upon successful biometric verification, some class-
specific secret information, (e.g., a cryptographic key) is
released. Traditional biometric authentication systems re-
lease cryptographic keys when the output of the matcher,
which compares the template of the claimed class and the
biometric signature, indicates an authentic match. However
the security of such a system can be compromised by
overriding the actual output of the matcher with a fake
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match score to directly release the cryptographic key. This
problem can be mitigated by combining the two tasks of
biometric matching and cryptographic key release into a
single step. However, the task of binding and accurately
retrieving information from templates is challenging since
query patterns (e.g., biometric signatures) are usually noisy,
either due to their natural variability or noise in the image
acquisition process, which can result in errors in the infor-
mation retrieved from the template.

Since we concentrate on biometric key-binding as the pri-
mary application of our framework, we now describe some
other desirable properties [1] of the designed templates:

1) Revocability: Just as forgotten or stolen passwords
are easy to revoke and new passwords to re-issue,
biometric templates should also allow the same.

2) Security: It must be computationally very hard to re-
verse engineer the information bound to the biometric
template without an authentic biometric sample. Also,
it should be computationally hard to reverse engineer
the raw biometric sample from the template.

3) Performance: In order to ensure that only an authen-
tic query is able to release the key, the error rates i.e.,
the probability of failure to retrieve the keys for an
authentic match and the probability of key retrieval
by an impostor match should be low.

4) Diversity: Should have the ability to issue diverse
templates, obtained from the same biometric, to be
used in multiple applications.

In this paper, we will analyze a biometric key-binding
framework that exhibits the above attributes.

The main idea of the proposed method for binding
information (interchangeably referred to as key) to im-
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age patterns is to map this information into parameters
for geometric image transformations like rotation, scaling,
translation etc. (restricted to spatial translations onlyin
this paper), transform the training images based on these
parameters and create a template using the transformed
images. During authentication, the query is matched with
the template and the image transformation parameters are
estimated from the output of the matching process from
which the information bound to the template is retrieved.

Given training imagesI1, I2, . . . , IM and spatial trans-
lation parameters(a1,a2) (extracted from the key) the
templatef is designed as a weighted sum of the transformed
training images with the weights obtained to optimize some
appropriate criterion (like tolerance to noise etc.)

f = ∑
i

∑
j

Ψi(I i ⊖Γ j) (1)

where Ψi is a data-dependent weighting matrix for each
transformed image andJ = I ⊖ Γ denotes a projective
transformation of an imageI by a projection matrixΓ.
During the authentication stage, given only the templatef
and an authentic queryy, we try to extract the spatial trans-
lation parameters by cross-correlating the query and the
template, from which the key bound toI i can be extracted.
The template is designed to facilitate the extraction of the
translation parameters from the cross-correlation output.

Building upon the basic idea of cross-correlation for
matching a pattern with a template, many advanced corre-
lation filters (CFs) have been developed for shift-invariant
object recognition. These filters can be designed to tolerate
appearance variability in the image, thereby facilitating
stable retrieval of spatial translations. We extend the tradi-
tional CF design principles to design templates which while
performing the primary task of pattern matching, also have
key-binding functionality built into them.

A preliminary version of this work appeared in [2],
where we introduced the general framework for binding
cryptographic keys to biometric templates. In this paper
we present a more robust version of that algorithm which
significantly increases the length of the key that can be
bound to the template, and improves the failure rate for
retrieving the information for an authentic match and the
information retrieval rate for an impostor input. Specifically
our main contributions in this paper are:

1) Robust Information Retrieval: Key retrieval from
the template for an authentic match is susceptible to
natural variability in biometric signatures. We intro-
duce the use of a sparsity prior while matching the
query pattern with the CF for improved robustness.

2) Probabilistic Decoding: Instead of thresholding the
correlation output to determine the key bound to the
template, we propose a maximum-a-posteriori prob-
ability (MAP) estimate of the key among candidate
keys by a probabilistic mapping of the correlation
output thereby improving the key retrieval rate.

3) Error Correction: While CFs offer some tolerance
to pattern distortions, large distortions in the query

pattern degrade the correlation outputs causing errors
in the retrieved key. However, an attractive feature
of CFs is the graceful degradation of the matching
output to noise, occlusions or other distortions in the
query. We take advantage of this by using error cor-
rection codes (ECC) to handle errors in the retrieved
key, leading to better key retrieval rates.

4) Extensions: Finally we show how the same key
binding framework can be used to spread secret in-
formation over multiple pattern classes by designing
a single template. This allows us to spread the key
over multiple users or multiple biometric modalities
thereby enabling multi-user or multi-modal or both
multi-user and multi-modal biometric key-binding.

The remainder of the paper is organized as follows. We
briefly review recent literature for binding information to
biometric signatures in Section 2, following which we
review the CF design formulation used in this paper and
its extension to bind keys to the filter in Section 3. The
key-binding framework is described in Section 4 and in
Section 5 we analyze how secure the biometric and the
information bound to the template are. Experimental results
are presented in Section 6 followed by the multi-class and
multi-modal extensions of our framework in Section 7.
Finally we conclude in Section 8.

2 RELATED WORK

Biometric authentication being a natural application where
one would like to securely bind and retrieve information to
and from image patterns, there have been many attempts to
address this problem. The goal of all proposed methods is
to account for the natural variability in biometric signatures
while producing stable outputs. We briefly describe some
of the main ideas proposed in the literature.

Soutar et al. [3][4][5] proposed a correlation-based
key binding algorithm for fingerprint-based authentication.
They design a CF from representative training fingerprint
images, set the CF magnitude to one for all spatial fre-
quencies while adding to the filter a random phase array
(generated from a password or another biometric modality
for example). Key-binding is done by linking the key to the
binarized correlation plane. Although we use CFs in our
framework, our work differs significantly from this early
work in both the CF design and the key-binding algorithm.

Another approach is to extract features that are relatively
stable to appearance variations from the training patterns,
which are then matched with the features extracted from
a query sample. Juels and Sudan [6] proposed a scheme
where the secret information is embedded in a fuzzy vault
VF with a set of featuresSA. This secret information can
be recovered by presenting another set of featuresSB

which is close toSA. This scheme has been evaluated for
fingerprint-based recognition [7] and iris recognition [8]
using a polynomial for binding the key to the biometric
features. Hao et al. [9] encode binary keys to iriscodes by an
XOR operation between the two while using Hadamard and
Reed-Solomon codes to account for variability in iriscodes.
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Sutcu et al. [10][11] perform syndrome encoding using
a low density parity check (LDPC) code for fingerprint-
based matching. While fuzzy vaults offer some tolerance
to biometric appearance variability, they have some limi-
tations [12][13] (for example, the secret information can
be compromised if the same biometric data is reused in
multiple systems, attacks based on statistical analysis of
the structure in biometrics are possible and the original
template can be obtained from the query pattern knowing
that it is an authentic match etc.), some of which are being
addressed [14]. A scheme where a hash is generated from
the features and matching is done by comparing the hashed
features was proposed in [15].

3 CORRELATION FILTERS

Since our key-binding framework presented here heavily
uses CFs, we provide a brief review of them. More details
can be found elsewhere [16]. A CF is a spatial-frequency
array (equivalently, a template in the image domain) that is
specifically designed from a set of training patterns that are
representative of a particular class (a class could be a single
image or a single individual or even a group of individuals).
This template is compared to a query image by obtaining
the cross-correlation as a function of relative shift between
the template and the query. For computational efficiency
this is computed in the frequency domain (u,v), i.e.,

C(u,v) = I∗(u,v)F(u,v) (2)

whereI(u,v) is the 2D Fourier transform (FT) of the query
pattern andF(u,v) is the CF (i.e., 2D FT of the template)
andC(u,v) is the 2D FT of the correlation outputc(x,y)
with ∗ denoting the complex conjugate. Since the images
and their FTs are discrete-indexed, FT here refers to the
discrete Fourier transform (DFT) which is implemented
via the Fast Fourier Transform algorithm (FFT). The CFs
are usually designed to give a sharp peak at the center of
the correlation output planec(x,y) for a centered authentic
query pattern and no such peak for an impostor.

3.1 Multi-Peak Correlation Filters

One of the main differences between CFs and other clas-
sifiers is that, CFs are designed to not only discriminate
between different object classes but to also produce sharp
peaks in the correlation output which aids in precisely local-
izing the target in a scene. This is achieved by minimizing
the Average Correlation Energy (ACE), along with some
regularization, which serves as a proxy loss function to
optimize for peak sharpness (for notational ease expressions
are given for 1-D signals). ForN1 training images we have,

min
f

N1

∑
i=1

‖xi ⊗ f −gi‖
2
2+λ‖f‖2

2 (3)

where⊗ denotes the cross-correlation operation,xi denotes
the i−th image,f is the CF template andgi is the desired

(a) (b) (c)

Fig. 1: Correlation Filter Target: (a) traditional correlation output for
authentic input with peak at center, (b) multi-peak correlation output for
authentic input, (c) correlation output for an impostor input.

correlation output for thei−th image andλ is the regular-
ization parameter. This optimization problem can be solved
very efficiently in the frequency domain where the objective
function has the following closed form expression,

min
f̂

N1

∑
i=1

f̂†X̂ iX̂
†
i f̂ −2

N1

∑
i=1

ĝ†
i X̂†

i f̂ + ĝ†ĝ+λ f̂†f̂ (4)

wherex̂ denotes the Fourier transform ofx and X̂ denotes
the diagonal matrix whose diagonal entries are the elements
of x̂ and † denotes conjugate transpose. Solving the above
optimization problem results in the following closed form
expression for the CF,

f̂ =

[

λ I +
N1

∑
i=1

X̂ iX̂
†
i

]−1[ N1

∑
i=1

X̂ i ĝi

]

(5)

where I is the identity matrix. Depending on the choice
of the ideal correlation planeg, the solution to the above
optimization lead to the common unconstrained CF designs
like Unconstrained Minimum Average Correlation Energy
(UMACE) filter [17], Unconstrained Optimal Trade-Off
Synthetic Discriminant Function (UOTSDF) filter [18],
Maximum Average Correlation Height (MACH) filter [18]
and Minimum Output Sum of Squared Error (MOSSE)
filter [19]. The key-binding application in our work is
enabled by an appropriate choice of the ideal correlation
plane g. Fig. 1 shows an illustration of the difference
between the output for a traditional CF and the multi-
constrained CF used to bind information to the training
set. It must be noted that, if the query image is one of
the training images with an unknown shift (dx,dy), then
while the absolute locations of the peaks will shift by
(dx,dy), the relative displacements between these multiple
peaks will not change when using good quality images. This
property together with the flexibility in designing the filter
is exploited to bind the key with the biometric signature.

4 PROPOSED FRAMEWORK

The main idea behind our approach is to use CFs for
the dual purpose of pattern matching and binding class-
specific information to the template. During authentication
the bound information is released automatically if the query
pattern is authentic. We now describe the enrollment and
authentication stages of our framework.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

KeyHashHash of Key
Extract

Parameters

Design

Filter

Image

Transfor-

mation

Secondary Input

Training Data

Template

Fig. 2: Block diagram of the training stage. Green denotes the inputto the system, blue denotes the processing during training and pink denotes the
output of the training phase which is stored in the database.See text for more details.
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Fig. 3: Example showing the mapping from binary key to peak location. We consider a one dimensional example with 16 possible locations (0-15).
We show how a 6 bit key is mapped to a location which is used as an input to the template design algorithm.

4.1 Key-Binding Framework

4.1.1 Enrollment
Fig. 2 shows the block diagram of the training phase of the
framework. In this stage the following are required.

• Training images representative of the authentic class.
These could be biometric signatures under various
conditions (e.g., face images with different lighting,
expressions etc.) expected during testing.

• Information or key to be bound to the template.
• A secondary input (e.g., password or pin) is required

for additional protection (details in Section 4.1.3).

The information or key to be bound is mapped into
locations in the correlation plane, by segmenting the key
into smaller segments of appropriate size (See Fig. 3 for
an example). Letb be the bit representation of the key with
m bits, andq be the total number of segments. Thei-th key
segment is given as,

ki [n] = b[n] ·w[n−δi ] (6)

w[n] =

{

1 if 0 ≤ n≤ r −1
0 otherwise

(7)

where r is the size of the window andδi is the window
shift. While other configurations are possible, in this work
we only consider non-overlapping windows,δi = (i −1)r.
Now each segment of the keyki is mapped to a peak
location in the correlation plane, therefore the number of
peaks is determined by the length of the key to be bound
to the training images. We use these locations to get the
ideal correlation outputg in Eq. 3 (a value of one at the
peak locations and zeros everywhere else) to design the
CF for the given class and key pair. For example, in Fig.
3 the ideal correlation planeg would have peaks (values
of one) at locations 3 and 10 and zeros everywhere else.
Ideally the multi-peak CF should produce correlation peaks
at those locations in response to a centered authentic image.
For an un-centered query pattern, the peaks shift globally

depending on the unknown relative shift between the query
and the training images. Therefore during training, we
compute the centroid of the specified peak locations which
is stored in the database.

During authentication once the peaks are identified, we
shift the centroid of the detected peaks to the location stored
in the database. Further, since the key is mapped only to
locations in the correlation plane, it can be recovered only
up to a permutation if the order of the key segments is
not encoded. While other configurations are possible, we
address this issue by encoding the ordering along with the
key in the filter itself by augmenting the keyki with the
order of that segment. For example, in Fig. 3, we need two
peaks (each taking on one of 16 locations) to represent two
3-bit key segments with the extra bit required to encode the
ordering of the key segments which reduces the number of
key bits that can be represented by a given number of peaks.
For images of sized1xd2 and a key withm bits, the number
of peaks and the window size are related as follows,

q(log2d1+ log2d2) ≥ m+qlog2q (8)

r =

⌈

m
q

⌉

(9)

where⌈⌉ denotes the ceiling operation and the termqlog2q
is the number of bits required to encode the peak ordering
information. The multi-peak CF is designed with the train-
ing images and the constraints obtained from the key as
inputs. This template is stored in the database along with
the hash value of the key (this is optional) computed using
a one-way hash function. Further we also do not allow the
locations of the constraints to be withinε (typically 5 or 10
in our experiments) pixels from the boundary of the image.

4.1.2 Authentication

Fig. 4 shows a block diagram of the authentication process.
In this stage, the query pattern is provided along with
secondary input and a claimed identity in a verification
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Fig. 4: Block diagram of the testing stage. Green denotes the input from the user, yellow denotes the data stored in the database,blue denotes the
processing during the testing stage and pink denotes the output of the system. See text for more details.

scenario. The query is then cross-correlated using the CF
corresponding to the claimed identity. If the query is
authentic, the resulting correlation should have peaks at
the right locations (except for a possible global shift). We
then shift the centroid of the detected peaks to the centroid
stored in the database. From the new peak locations,
the information bound to the template is reconstructed.
The correctness of the retrieved key can be confirmed by
comparing the stored hash value with the hash value of the
recovered information. Only when the two hashes match,
is the information released. For an impostor query image,
key recovery would fail due to the absence of any sharp
peaks in the resulting correlation plane when either the
secondary input is incorrect or the query does not belong
to the claimed class or when both are incorrect. Note that
the hash value is used only to confirm that the recovered
information is correct. In situations where such a guarantee
is not required or when there are other ways of confirming
the accuracy of the retrieved key (e.g., by using the key
retrieval confidence measure described in section 4.2.2 to
decide the correctness of the retrieved key), the hash of the
key is not stored in the database along with the template.

4.1.3 Image Transformation
The main purpose of parametrically transforming the im-
ages before being used to design the CF is to prevent
information leakage from the template and to help create
diverse and cancelable biometric templates from the same
biometric samples. Examples of such parametric transforms
previously proposed in the literature include non-invertible
geometric image transformations [20], convolution with
random masks for cancelable CFs [21] and data projection
onto random matrices [22]. The “secondary input” is used
as the parameter for the image transformations. In this
paper we adopted the technique introduced in [21]. Using
a user provided password as a seed, a matrix with random
entries is generated which is then convolved with the gallery
images. The resulting images (see Fig. 5 for an example)
are then used to design the CF for that user. During testing,
the probe image is supplied along with a password which
determines the random mask. This probe is then convolved
with the random mask and then correlated with the CF of
the corresponding claimed identity. If the probe password
matches the password provided by the user at training,
the effect of the random mask is canceled out during the
correlation operation between the CF and the “transformed”

Fig. 5: Transformation by a random convolution kernel.

probe image (this is shown in [21]). Therefore, for an
authentic match the effect of the random mask is completely
neutralized and only the underlying biometric features
dominate the matching process. However, for an impostor
match the probe random mask does not neutralize the
random mask used while training and hence the matching
process is dominated by the random masks and therefore
improves the non-match performance.

4.2 Robust Key Retrieval

During decoding the main challenge in recovering the
information bound to the template is in robustly identifying
the peaks and the peak locations in the correlation plane
(from which the key is recovered) since each point in
the correlation output is a potential peak. This problem is
exacerbated by the presence of false peaks due to variability
(we will refer to this variability as noise) in the correlation
plane due to variable imaging conditions, pattern variability
or sensor noise. This noise leads to errors in identifying
which locations in the correlation plane correspond to peaks
and also errors in the locations of the detected peaks. We
address these errors by first denoising the correlation plane
as much as possible following which we use probabilistic
estimates to determine the number of peaks and peak
locations and finally correcting for any residual errors in
the peak locations using error correcting codes.

4.2.1 Exploiting Sparsity for Denoising

We address the noise in the correlation plane based on the
following observation. For an authentic match the resulting
correlation plane would have only a few high values (peaks)
and most of the correlation plane would have low values
(noise) i.e., the ideal correlation plane would be highly
sparse. Therefore, instead of reconstructing the correlation
plane by an inverse FT (which corresponds to minimizing
the l2 norm of the correlation output), reconstructing the
correlation plane by minimizing thel0 norm of the resulting
correlation output will result in a less noisy correlation
plane. We remind thatF(u,v) and I(u,v) denote the CF



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

and the Fourier transform of the test image whereu andv
denote the 2-D spatial frequencies. Let ˜c(x,y) and C̃(u,v)
be the ideal target correlation output for an authentic match
in the spatial and spatial frequency domains respectively
i.e., c̃(x,y) would have large non-zero values at the desired
peak locations derived from the key and zeros everywhere
else. We model the correlation plane obtained from the filter
F(u,v) and query image (whose FT isI(u,v)) as a noisy
version of the ideal target correlation plane i.e.,

C(u,v) = I∗(u,v)F(u,v) = C̃(u,v)+η(u,v) (10)

where η denotes noise. So we would like to recover the
N(= d1d2) dimensional correlation output as follows,

ĉ= argmin
Θ

‖C−AΘ‖2
2 s.t. ‖Θ‖0 ≤ T0 (11)

whereΘ ∈ R
N is the desired correlation plane,A ∈ C

NxN

is the DFT matrix andC ∈ C
N is the Fourier transform of

the correlation plane obtained from the designed CF and
the query image and‖Θ‖0 is a pseudo norm which counts
the number of non-zero values in the correlation planeΘ
which ideally must correspond to the number of peaks. The
problem in Eq. 11 is NP-hard but it has been shown that
under some conditions [23] replacing thel0 norm with thel1
norm will result in the same solution forsufficientlysparse
[24] correlation outputs, i.e.,

ĉ= argmin
Θ

‖C−AΘ‖2
2 s.t. ‖Θ‖1 ≤ T1 (12)

Further since the desired sparsityT0 (and T1) is unknown
we solve the followingl2− l1 problem (calledbasis pursuit
denoising[25] - BPDN),

min
Θ

1
2
‖C−AΘ‖2

2+ τ‖Θ‖1 (13)

We use theSparse Reconstruction by Separable Approxima-
tion (SpaRSA) [26] algorithm to solve Eq. 13. Depending
on the similarity of the query to the training patterns
used to design the template, different values ofτ result
in different levels of denoising in the resulting correlation
plane. Since denoising is important for key retrieval, we
automatically choose the value ofτ that gives the best
denoised correlation plane. This is done by solving Eq. 13
for an ascending series of values forτ. Starting from a low
value of τ, we check at every iteration if the sparsity of
the resulting correlation plane is more than the sparsity
in the previous iteration. We continue this until BPDN
returns an all zero correlation plane, which happens when
the regularization cost (τ‖Θ‖1) is greater than the noise in
the correlation plane. After this the algorithm returns the
solution of the previous iteration, since that is the iteration
with the best denoised correlation plane. Experimentally,
this simple idea was found to work very well.

4.2.2 Probabilistic Framework for Decoding
Once the correlation plane has been obtained either by
solving Eq. 2 or Eq. 13, the peaks in the correlation plane
need to be identified in the presence of noise. During
authentication if the number of key segmentsq are known
(corresponds to knowing the size of the key) then one can
simply pick theq highest peaks in the correlation plane
and extract the information from the corresponding peak
locations. However, in many scenarios the length of the
key is unknown, in fact we show in Section 5 that hiding
the length of the key makes the information more secure.
In this case every location in the correlation plane is valid,
hence there are many possible keys that can be extracted
from the correlation plane. One can simply determine if a
particular location is a peak or not using a hard threshold
on the correlation values. However, the noise level in the
correlation plane varies from query to query due to image
variabilities rendering a fixed threshold suboptimal in terms
of separating the peaks from noise. Therefore we perform
a probabilistic analysis of the correlation plane to detect
and identify peaks. We extract the most likely key from
the correlation plane by estimating the most likely number
of peaks in the correlation plane. The key idea is to
probabilistically map either a single value or a group of
values of the correlation output to a posterior probability
value on the existence of a peak or a group of peaks.
For anN dimensional correlation plane, leth be a vector
of hypotheses withhi being the hypothesis that thei-th
element is a peak,¬hi the hypothesis that thei-th element
is not a peak, letc be the correlation values andci be the
correlation value at thei-th element.

q∗ = argmax
q

p(hq|c) (14)

p(hq|c) ∝ p(c|hq)p(hq) (15)

p(c|hq) = p(c|hq
Q,¬hq

Q̃
) (16)

wherep(hq) is the probability ofq peaks in the correlation
plane,Q= {i|1≤ i ≤ q}, Q̃= {i|q+1≤ i ≤ N}, hq is the
hypothesis that theq highest correlation values are peaks,
hq

Q is a q dimensional vector of hypothesis corresponding
to there beingq peaks in the correlation plane.p(c|hq)
represents the likelihood of the correlation planec given the
hypothesishq which is learned andp(hq) is the prior on the
hypothesis that there areq peaks in the correlation plane.
Typically since the dimensionality ofh can be very large,
modeling this joint distribution is not feasible. Therefore
we make the following simplifying assumption,

p(c|hq) = p(cQ|h
q
Q)p(cQ̃|¬hq

Q̃
) (17)

wherecQ is defined just likehq
Q. We further assume that,

the correlation values which are not peaks have statistical
distributions that are identical and independent of each
other. This is a reasonable assumption since the correlation
values which are not peaks are caused by noise. This is
however not true of the correlation values which are peaks
since all of them are actually caused by the same image.
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p(c|hq) = p(cQ|h
q
Q)

N

∏
i=q+1

p(ci |¬hq
i ) (18)

On observing the empirical distributions (from experi-
ments on a small dataset of face images), we found that
a multivariate normal distribution and a univariate normal
distribution are reasonable approximations forp(cQ|h

q
Q)

and p(c|¬hq) respectively wherec is the correlation output
at locationh. Further the prior on there being a peak ath
is p(hq) = q

N since the distribution of the peaks in the cor-
relation plane is uniform. We model the prior distribution
for each hypothesishq as a binomial distribution,

p(hq) =

(

N
q

)

p(hq)qp(¬hq)N−q (19)

where q ∈ {0,1, . . . ,N}. During the learning stage the
following parameters for our models are estimated from
a separate generic training set.

1) µ¬h andσ¬h for p(c|¬hq)
2) µQ andΣQ for p(cQ|h

q
Q)

From empirical eigenvalue analysis of the covariance matrix
ΣQ, we observed that there is only one dominant eigenvalue.
Hence in practice instead of the whole covariance matrix we
store the largest eigenvalue and its corresponding eigenvec-
tor. Since the size of the covariance matrix gives away the
number of correlation peaks, we create a single covariance
matrix for the maximum allowable peaks and use the
sub-matrix depending on the number of peaks. Further in
practice instead of searching over all possibleq, we can
use a simple heuristic (number of peaks corresponding
to maximum change in the correlation values sorted in
descending order) to find the most likely number of peaks
in the correlation plane and do a local search. Once we
find the number of peaks, we find the locations of the
corresponding peaks to retrieve the key from the template.
The probabilistic treatment of the correlation plane also
provides a confidence measure for key retrieval from the
correlation plane in scenarios where this might be useful.

4.2.3 Robust Decoding with Error Correction
Due to correlations between neighboring pixels in images
and noise in the correlation plane, the peaks in the correla-
tion plane are not very sharp resulting in the peak locations
sometimes being off by a couple of pixels (Note that these
are errors remaining after accounting for any global shift
in the correlation peaks that arises due to relative shifts
between the query and training patterns). This results in
errors in the key retrieved from the corresponding peak
locations. We use ECC to handle such errors. To ensure
that the size of the parity bits does not reveal the length of
the key, we pad all keys up to a known and pre-determined
maximum key length and during decoding the key length
is determined by the number of peaks detected in the
correlation plane. Further since even a single pixel error
in the peak locations may result in multiple bit errors in
the recovered key, we apply gray coding on the key which
is then used in the template design process. This ensures

that the degradation pattern (bit errors) in the retrieved key
is proportional to the degradation pattern (errors in peak
location) in the correlation plane. During decoding once
the peak locations are identified, we decode the gray code
to piece together the original key.

We consider two ways of applying ECC, at the segment
level for each segment that the key is mapped into and
at the key level before mapping it into segments. In the
former scenario, one can guarantee to correct every segment
up to a selected number of errors and is a more natural
choice since errors happen at the segment level. However
not every segment is in error, hence in the latter scenario,
we can achieve error correction performance comparable to
the former scenario but with less redundancy. For both the
cases we use binary BCH codes (and shortened binary BCH
codes where needed) since they are particularly well suited
for our problem. Although we do not pursue it in this paper,
the correlation peak values can be used as soft information
for soft decision decoding to improve ECC performance,
perhaps at the cost of increased computational complexity.

5 SECURITY ANALYSIS

Keeping the key and the biometric signature secure is
one of the goals of biometric key-binding. In this section
we analyze the security of the information bound to the
template and the biometric signature itself.

In the scenario where a secondary input is used to
map the image into another space, both the biometric
signature and the secondary input have to be correct to
accurately retrieve the information which effectively gives
us a two-factor authentication scheme. Therefore if the
biometric signature is compromised, the security of the
hidden key depends on the entropy of the secondary input
and also on the quality of the biometric signature stolen
by the adversary. If the secondary input is compromised
the security of the hidden key depends on how well the
adversary estimates the biometric signature. If the hidden
key is compromised, the adversary can recreate the signal
x used to design the template up to an image mapping (if a
secondary input is used). If the image mapping is however
a non-invertible transform as presented in [20], then the
original biometric signature cannot be recovered.

5.1 Brute Force Security

In this scenario the adversary has access only to the
templatef and the centroid of the peak locations. Hence
the adversary can retrieve the key only by guessing it i.e.,
guessing the number of peaks in the correlation plane and
the locations of the peaks subject to constraints on where
in the correlation plane the peaks can occur (the adversary
will have to guess the locations of onlyq−1 peaks since
the centroid of theq peak locations is known). Under the
assumption that the adversary knows the number of peaksq
in the correlation plane (corresponds to knowing the length
of the key), the key space in bits that the adversary has to
search over is,
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L(q) = (q−1) log2

[

(d1− ε)(d2− ε)
q

]

(20)

whereε is the size of the correlation output boundary region
that is ignored. The(d1−ε)(d2−ε)

q term quantifies the number
of available peak locations for each peak and the number
of peaksq for a key of lengthm is governed by Eq. 9.
In the scenario where the adversary has no knowledge of
the length of the hidden key (in scenarios where the key
length is fixed we can augment the key with random data
of arbitrary size which is then encoded in the template),
then the key space to search over is,

L(q∗) =
q∗

∑
q=1

(q−1) log2

[

(d1− ε)(d2− ε)
q

]

(21)

whereq∗ is the actual (unknown) number of peaks in the
correlation plane given by Eq. 9.

Through the rest of this paper we quantify and report
brute force security assuming that the adversary knows the
number of peaks in the correlation plane (i.e., key size) and
is therefore a conservative estimate. The above expressions
however do not account for any decrease in key security
when using ECC to correct for errors in the detected peak
locations. When using ECC, the security of the key reduces
by an amount equal to the error correction capability of the
code for a properly chosen code, i.e., for am bit key, t bit
error correction per segment (2t bit error correction per
peak for the two coordinates) andq peaks, the security is
given byL(q)−2tq for perfect codes. However, BCH codes
are not perfect codes (i.e., one can sometimes correct more
than t errors up to a maximum of 2t errors at the expense
of computational complexity), therefore we report the range
[L(q)−4tq,L(q)−2tq] for our experiments.

5.2 Dictionary Attack

We now consider a more realistic attack which is based
on a dictionary of biometric signatures mined from some
data source. It must be noted that a dictionary attack can
be successful only if the secondary input is known so as
to compensate for the convolution with the random mask.
Therefore in addition to the template (CF of a particular
user) we also assume that the adversary has access to the
secondary input (password in our case). Since correlation
is a linear operation any query which is a weighted lin-
ear combination of the training images will result in a
correlation output with sharp peaks from which the key
can be retrieved. The goal of an adversary is to estimate
an unknown number of transformationsΓ1,. . . ,Γq∗ given f
which can be done only by estimating any point on the
unknown hyperplane formed by the training images or the
subspace on which the training images lie on.

Let the match score be the maximum correlation value,
i.e., max{fT(x⊖Γ)|Γ ∈ (a1,a2),0≤ a1 ≤ d1,0≤ a2 ≤ d2}
which is convex inx and non-convex inΓ, then givenf
an estimate of the signalx̃ can be obtained by solving the
following optimization problem,

max
x

fT(x⊖Γ) (22)

s.t. ∀ Γ ∈ (a1,a2),0≤ a1 ≤ d1,0≤ a2 ≤ d2

‖x‖2 = 1

This is a convex problem inx for a given Γ and can be
solved to obtain an imagẽx which maximizes the match
score for the givenΓ. Since Γ is defined over a finite
space, only a finite number of convex problems need to
be solved. However this does not guarantee that correlating
this solution with the filter will result in peaks at the right
locations from which the key bound to the template can
be retrieved. In fact in the absence of a model forx, the x̃
which maximizes the match score is the complex conjugate
of the templatef from which the key cannot be retrieved.

However in a more realistic scenario the adversary has
access to an image modelx = Dλ where D ∈ R

Nxt is a
dictionary for x (e.g., eigenfaces for a face database from
any publicly available face database.) which helps reduce
the search space fromx ∈ R

N to λ ∈ R
t . In this scenario

the adversary can estimate an imagex̃ which potentially
helps retrieve the key bound to the template by solving,

max
λ

fT(x⊖Γ) (23)

s.t. ∀ Γ ∈ (a1,a2),0≤ a1 ≤ d1,0≤ a2 ≤ d2

‖x‖2 = 1

x = Dλ

Again this is a convex problem inx for a given Γ, in
fact we can easily derive a closed form expression forx̃
in terms off andD for a givenΓ. Therefore the adversary
can estimate an imagẽx for a large but finite number of
values ofΓ and pick the image with the highest correlation
value. This estimated imagẽx can now be used to retrieve
the key bound to the corresponding templatef.

5.3 Substitution Attacks

We now make a brief mention of a particular kind of
attack against which the proposed algorithm is unsuitable.
When an attacker has access to a user’s secret key he/she
can design a new template using his/her own biometric
signature and password to masquerade as the said user
via a simple substitution attack or a blended substitution
attack. However, substitution attacks are possibleonly if the
attacker has access to the secret key that the biometrics are
being used to protect. Such attacks enable the adversary to
effectively bypass the whole biometric matching algorithm
by simply adding himself/herself into the system to release
the secret key. The proposed algorithm is ineffective against
such attacks and as such is unsuitable for scenarios where
the adversary has access to the secret key that the template
is supposed to protect. While templates can be designed
to prevent two different users to release the same keys,
such techniques might not be scalable and are beyond the
scope of this paper. A simpler solution to prevent such
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blended substitution attacks would be to hash the template
or digitally sign the template to ensure that it has not
been tampered with. The security of the stored hash of the
template is now of paramount importance.

6 EXPERIMENTAL RESULTS

To demonstrate the effectiveness of our scheme, we conduct
several experiments where we bind random data to biomet-
ric signatures and attempt to retrieve this information by
matching against query patterns. Further to demonstrate the
generality of our framework, we use two different biomet-
ric modalities, faces and palmprints to test our proposed
framework. Since biometric key-binding is expected to be
used for applications such as access control, e-commerce
etc., it is reasonable to expect user cooperation while
presenting his/her biometric, therefore in our experiments
we consider only illumination and expression variation in
the query images. Illumination is one variable that cannot
be controlled well even with co-operative users and hence
became the impairment variable in this paper. Since binding
and retrieving information is the goal of the proposed
framework, we report performance in terms of information
retrieval failure rate (IRFR) and false class information
retrieval rate (FCIRR) i.e., the rate at which a false class
query pattern can retrieve the information of another pattern
class due to the similarities between the two pattern classes.
Ideally we would like FCIRR to be zero, since it is not
desirable to have an impostor retrieving the information of
some other user. For the sake of comparison we also report
the results of standard biometric authentication in the form
of Equal Error Rate (EER) and the Rank-1 identification
rate without biometric key-binding.

6.1 Databases

1) CMU PIE: The CMU-PIE database [27] has images
of faces with different poses, expressions and illu-
mination variations. We present results using frontal
images of neutral expressions with different illumi-
nations, we use both the PIE-lights and PIE-nolights
where ambient lights are on and off respectively. The
PIE-lights and PIE-nolights databases consist of 68
classes with 24 images per class and 66 classes with
21 images per class respectively. In our experiments
we used 3 images for training and the rest of the
images for testing. The 3 training images were chosen
such that one has illumination from the left, another
has illumination from the front and the third has
illumination from the right i.e., indices 3,7 and 16.

2) CMU Multi PIE: The CMU Multi-PIE database
[28] is an extension of the PIE database. It has
a total of 337 subjects. As in PIE, different face
poses, expressions and illumination variations were
recorded. We present results using frontal images
of neutral expressions with different illuminations of
which there are over 23000 images. We use 15%
of these images for training which corresponds to 3
images per session, one with illumination from the

left, one with illumination from the right and the third
has illumination from the front among 20 different
illumination patterns and use the rest for testing.

3) PolyU: The PolyU palmprint database [29] consists
of 386 classes with over 7500 images collected over
two sessions with about 10 images per session. We
randomly chose 15% of the images for training and
used the rest for testing.

4) FRGC: The Face Recognition Grand Challenge
database [30] consists of about 50,000 recordings
divided into training and validation partitions. The
validation set is further divided into a target set and a
query set of 466 people. For our experiments we used
a 410 class subset of the target set (after eliminating
all classes with fewer than 6 images) with a total
of 15,804 images. We randomly chose 25% of the
images for training and used the rest for testing.

6.2 Pre-Processing

We process the face databases by first running an eye-
detector to get the eye locations which are used to register
and size normalize the images. Similarly we process the
palmprint images as in [31] to extract and register the
palmprint from the full images.

6.3 Experiments

We conducted numerical experiments with images of size
128x128 to bind randomly generated keys of length be-
tween 20 (corresponds to 2 peaks) and 770 (corresponds to
80 peaks) bits (images of larger size allow us to bind longer
keys since more peaks can be packed in the correlation
plane). Each experiment is conducted 10 times since the
keys bound to the template are generated randomly and
we present results averaged over these runs. Table 1 shows
the key size1, brute force security with no error correction,
range of brute force security with 1 bit and with 2 bit
error correction per peak for different number of peaks
for images of size 128x128 and correlation outputs of size
256x256. As explained in Section 5.1, we report a range
for the brute force security with error correction since the
codes we chose for error correction are not perfect codes.
Due to space constraints we do not report in this paper
the results of our experiments with constrained filters (e.g.,
MACE[17], OTSDF[32] etc.) and other unconstrained fil-
ters (e.g., MACH[18] etc.) and results with error correction
on the full key instead of error correction on each key
segment. However, these results follow a similar trend to
the results reported here with the other CFs doing worse
than UMACE filter in terms of IRFR.

6.3.1 Biometric Authentication
We first present results without binding information to the
CFs, i.e., the CFs are designed to produce a single peak

1. Unfortunately due to additions like ECC and ordering information
of the key segments it is difficult to ensure that key sizes are powers of
2. So if one requires keys which are powers of 2, one has to use parts of
the bit sequence as a pad.
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TABLE 1: Brute Force Security

# of key Size Brute Force Security (bits)
Peaks (bits) (No ECC) (1 bit ECC) (2 bit ECC)

05 68 53 (33, 43) (13, 33)
10 126 111 (71, 91) (31, 71)
20 233 217 (137, 177) (57, 137)
30 332 314 (194, 254) (74, 194)
40 427 407 (247, 327) (87, 247)
50 517 495 (295, 395) (95, 295)
60 605 581 (341, 461) (101, 341)
70 690 664 (384, 524) (104, 384)
80 774 746 (426, 586) (105, 426)

TABLE 2: Biometric Recognition Rates (in %)

PIE Lights PIE Nolights Multi PIE PolyU FRGC
EER 0.07 0.25 2.42 0.23 5.2
IDA 100 99.9 99.3 99.7 93.5

for an authentic match at the center of the correlation plane
and no such peak for an impostor. We report the Rank-1
identification accuracy (IDA) as well as the Equal Error
Rate (EER) for all the databases used for our experiments
in Table 2. The results suggest that the databases used in
our experiments are relatively easy (excepting FRGC) for
CF based recognition.

6.3.2 Known Key Size
Here we present results when the key size is known
(nothing else is known about the key) which corresponds to
knowing the number of peaksq∗ in the correlation plane.
Hence we retrieve the key simply from the locations cor-
responding to theq∗ highest peaks i.e., the MAP estimate
described in Section 4.2.2 is not required to determine the
number of peaks. Errors in this case are caused by the
peaks being in the wrong locations, which are corrected by
ECC. Fig. 6a and Fig. 6b shows plots of IRFR for CMU
Multi PIE and PolyU Palmprints respectively as a function
of the number of peaks in the correlation plane and the
error correction capability going from no ECC to full ECC.
Table 3 lists the IRFR for a select number of peaks for the
different databases. Key retrieval performance is dependent
on the sharpness of the peaks and the quality of the query,
so the majority of the errors made with shorter keys are
due to the poor quality of the query image while majority
of the errors with longer keys are caused by reduced peak
sharpness which in turn is caused by increased noise in
the correlation plane. As expected we see that the key
retrieval failure rates increase with the size of the key.
Ideally we would like to maximize both peak sharpness
and number of peaks in the correlation plane. Both these
requirements cannot be achieved simultaneously since there
exists a trade-off between how many peaks one can pack
in the correlation plane and the sharpness of the peaks.
Error correction (even just 1 bit error correction) helps
improve the performance and dramatically in the case of
palmprints and FRGC. Since FRGC images exhibit harsher
illumination and expression variations compared to CMU
MPIE the performance on FRGC is worse compared to
CMU MPIE. Most importantly when using the secondary
input we observe zero FCIRR with no ECC, with 1 bit ECC

and with 2 bit ECC, i.e., no impostor was able to retrieve
the key of some other user, since to retrieve the key we
not only require the right secondary input (password in our
case) but also require a partial match between the template
and the query and also require all the peaks to be at the right
locations which is unlikely for an impostor input because it
is harder to identify the number of peaks due to high levels
of noise in the correlation plane. Further even if the number
of peaks is correctly determined, the peak locations have
errors which are beyond the error correction capability of
the codes used. Not using the secondary input does result
in non-zero FCIRR although the IRFR remains unaffected.
Under this scenario Table 4 lists the FCIRR for different
databases as we vary key length and the amount of ECC.
While the FCIRR is high for shorter keys, it quickly drops
down reaching zero for longer keys. Note that since we
use an adaptive threshold instead of a fixed threshold to
determine the peaks and peak locations in the correlation
plane, there is no trade-off between IRFR and FCIRR.

6.3.3 Unknown Key Size
Here we consider the scenario when the key size is un-
known which corresponds to unknown number of peaks
in the correlation peaks and we use the MAP estimate
described in Section 4.2.2 to determine the number of peaks
in the output correlation plane. In this case errors occur
either due to the wrong number of peaks being detected or
the detected peaks being in the wrong locations or both.
When the number of peaks detected is wrong, the hash of
the retrieved key and the original key do not match, so
these errors are simply added to the errors remaining after
error correction. Fig. 6c and Fig. 6d shows plots of IRFR
for CMU MPIE and PolyU Palmprints respectively as a
function of the number of peaks in the correlation plane and
the error correction capability going from no ECC to full
ECC. Table 5 lists the IRFR for a select number of peaks.
The key retrieval performance is worse compared to the
scenario where the key size is known as one would expect.
However this should also make it harder for an impostor
to retrieve somebody else’s key as is evident from FCIRR
(see Table 6) when not using the secondary input. It must
be noted that FCIRR is still zero when using the secondary
mask to convolve the images with the random mask.

6.3.4 Dictionary Attack
From the perspective of an adversary, we also conducted
experiments to retrieve keys bound to the templates of
subjects in the CMU PIE-nolights database via a dictionary
attack. We consider two scenarios, one where we design the
multi-peak CFs using the raw training images and the other
where the CFs are designed using training images that are
convolved with a random mask (obtained via a password).
In each of these cases we use three different dictionaries,
DICTA: all images of CMU PIE-nolights, DICTB: all
images of CMU PIE-lights and DICTC: 5000 randomly
selected images from FRGC. DICTA includes the training
images used to design the templates, DICTB has images
of the same subject corresponding to the templates but
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TABLE 3: KNOWN KEY LENGTH: IRFR (in %) with (0,1,2) bit ECC

# of Lights Nolights Multi PIE Palmprint FRGC
Peaks 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

05 0.38 0.00 0.00 1.64 0.00 0.00 0.19 0.02 0.01 10.00 0.48 0.11 14.47 0.57 0.14
10 1.21 0.00 0.00 2.91 0.00 0.00 0.46 0.07 0.03 18.65 1.05 0.32 30.08 2.11 0.53
20 1.97 0.00 0.00 4.37 0.00 0.00 1.07 0.25 0.17 31.23 2.65 1.14 59.15 6.70 1.68
30 2.42 0.00 0.00 5.74 0.00 0.00 1.86 0.61 0.47 40.40 4.12 2.35 80.36 14.68 4.39
40 3.48 0.00 0.00 7.37 0.64 0.46 3.21 1.34 1.11 47.38 5.89 3.90 92.96 25.92 9.49
50 4.00 0.00 0.00 8.56 1.18 1.18 4.88 2.50 2.24 53.18 8.00 5.86 97.88 36.94 15.63
60 4.84 0.00 0.00 11.08 3.09 2.27 7.32 4.40 4.04 58.23 10.34 8.32 99.62 51.92 26.89
70 5.38 0.03 0.03 13.57 4.83 4.67 9.94 6.60 6.10 62.41 13.20 11.15 99.95 64.56 39.11
80 6.21 0.08 0.08 17.66 8.32 7.52 13.00 9.30 8.78 65.87 15.26 13.49 100.0 76.26 53.31

TABLE 4: KNOWN KEY LENGTH: FCIRR WITHOUT RANDOM MASK (in %) with (0,1,2)bit ECC

# of Lights Nolights Multi PIE Palmprint FRGC
Peaks 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

05 13.30 13.30 13.30 9.16 9.16 9.16 22.42 22.42 22.42 0.44 0.44 0.44 27.81 27.81 27.81
10 2.78 2.78 2.78 1.13 1.13 1.13 9.99 9.99 9.99 0.02 0.02 0.02 13.76 13.76 13.76
20 0.21 0.21 0.21 0.03 0.03 0.03 2.84 2.84 2.84 0.00 0.00 0.00 4.60 4.60 4.60
30 0.02 0.02 0.02 0.00 0.00 0.00 0.76 0.76 0.76 0.00 0.00 0.00 0.88 0.88 0.88
40 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.19 0.19 0.00 0.00 0.00 0.11 0.11 0.11
50 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.03 0.00 0.00 0.00 0.02 0.02 0.02
60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(a) Multi PIE (known) (b) Palmprint (known) (c) Multi PIE (unknown) (d) Palmprint (unknown)

Fig. 6: Information retrieval failure rate (in %) with known key size(a,b) and with unknown key size (c,d).

TABLE 5: UNKNOWN KEY LENGTH: IRFR (in %) with (0,1,2) bit ECC

# of Lights Nolights Multi PIE Palmprint FRGC
Peaks 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

05 0.38 0.00 0.00 1.64 0.00 0.00 0.32 0.14 0.13 10.04 0.53 0.18 14.47 0.66 0.25
10 1.21 0.00 0.00 2.91 0.00 0.00 0.59 0.22 0.19 18.65 1.15 0.53 30.21 2.46 1.11
20 1.97 0.00 0.00 4.37 0.00 0.00 1.32 0.57 0.52 31.29 3.11 1.98 59.69 9.39 5.90
30 2.42 0.00 0.00 5.92 0.46 0.46 2.57 1.54 1.47 40.50 5.26 4.12 81.49 25.63 20.68
40 3.48 0.00 0.00 7.83 2.19 2.19 4.73 3.31 3.23 47.52 8.15 7.12 93.93 53.05 49.01
50 4.00 0.00 0.00 9.75 4.28 4.28 7.64 6.04 5.95 53.36 11.70 10.67 98.66 78.48 76.40
60 4.84 0.00 0.00 14.18 8.25 8.08 11.73 9.92 9.79 58.49 15.64 14.84 99.83 93.38 92.76
70 5.53 0.26 0.26 19.39 14.40 14.30 15.92 14.07 13.92 62.80 20.14 19.47 99.99 98.51 98.36
80 6.36 0.67 0.67 25.68 20.33 20.26 20.84 18.94 18.80 66.31 24.12 23.68 100.0 99.74 99.68

under a different illumination setting and DICTC does not
contain any images corresponding to the template subjects.
The dictionary attack is performed by solving Eq. 23 for
each template for every value of shift in the image (i.e.,
all possible values ofΓ) to estimate an image maximizing
the matching score. This estimated image is then used to
retrieve the key from the corresponding template. In the
latter scenario, we were unable to retrieve correct secret
key bound to any of filters designed for the experiments
described above since the random mask is unknown to the
adversary. Table 7 lists the key-retrieval rates in the former
scenario averaged over 10 different runs. As expected the
quality of the dictionary determines the success rate of such
dictionary attacks. Interestingly the efficacy of dictionary
attacks also depends on the number of peaks (and hence

key sizes bound to the template). Dictionary attacks against
templates bound with longer keys result in poorer image
estimates which in turn lead to poorer key retrieval rates.

7 DISCUSSION

In this section we discuss some extensions to the general
framework and some limitations of our algorithm.

7.1 Spreading Keys over Multiple Patterns

The ability to spread the keys over multiple pattern classes
is a very powerful feature to have since it opens up biomet-
ric key-binding to many different security configurations.
Notable examples of such applications are,
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TABLE 6: UNKNOWN KEY LENGTH: FCIRR WITHOUT RANDOM MASK (in %) with (0,1,2) bit ECC

# of Lights Nolights Multi PIE Palmprint FRGC
Peaks 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

05 2.85 2.85 2.85 0.98 0.98 0.98 4.83 4.83 4.83 0.02 0.02 0.02 23.18 23.18 23.18
10 0.22 0.22 0.22 0.03 0.03 0.03 0.97 0.97 0.97 0.00 0.00 0.02 7.58 7.58 7.58
20 0.01 0.01 0.01 0.00 0.03 0.03 0.07 0.07 0.07 0.00 0.00 0.00 1.06 1.06 1.06
30 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.05 0.05 0.05
40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 7: DICTIONARY ATTACK: Key Retreival Rate (in %) with (0,1,2) bit ECC

# Unknown Key Size Known Key Size
of Nolights Lights FRGC Nolights Lights FRGC

Peaks 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
05 99.0 99.0 99.0 81.0 81.0 81.0 52.8 52.8 52.8 99.0 99.3 99.3 92.5 92.5 93.4 94.1 94.1 94.1
10 92.5 92.5 92.5 35.4 35.4 35.4 4.92 4.92 4.92 92.5 92.5 92.5 70.8 70.8 71.1 58.0 58.0 58.7
20 68.5 68.5 68.5 0.32 0.32 0.32 0.00 0.00 0.00 71.1 71.1 71.8 20.3 20.3 20.3 5.57 5.57 5.57
30 38.0 38.0 38.0 0.00 0.00 0.00 0.00 0.00 0.00 45.2 45.2 45.2 2.95 2.95 2.95 0.33 0.33 0.33
40 10.8 10.8 10.8 0.00 0.00 0.00 0.00 0.00 0.00 20.3 20.3 20.7 0.33 0.33 0.33 0.00 0.00 0.00
50 1.60 1.60 1.60 0.00 0.00 0.00 0.00 0.00 0.00 6.89 6.89 7.21 0.00 0.00 0.00 0.00 0.00 0.00
60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.64 1.64 1.64 0.00 0.00 0.00 0.00 0.00 0.00
70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.33 0.00 0.00 0.00 0.00 0.00 0.00
80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.33 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 8: Multi-Class: IRFR (in %) with (0,1,2) bit ECC

# Unknown Key Size Known Key Size
of Lights Nolights Palmprint Lights Nolights Palmprint

Peaks 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
05 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
10 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
20 0.0 0.0 0.0 0.1 0.0 0.0 0.5 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.4 0.0 0.0
30 0.0 0.0 0.0 0.3 0.1 0.1 0.4 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.4 0.0 0.0
40 0.0 0.0 0.0 0.5 0.4 0.3 0.8 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.7 0.0 0.0
50 0.1 0.0 0.0 1.4 1.2 1.0 0.7 0.0 0.0 0.1 0.0 0.0 0.2 0.1 0.1 0.7 0.0 0.0
60 0.2 0.0 0.0 1.4 1.1 1.0 2.9 2.0 1.7 0.1 0.0 0.0 0.2 0.1 0.1 1.0 0.2 0.1
70 0.3 0.1 0.1 2.8 2.3 2.0 1.6 0.8 0.6 0.2 0.0 0.0 0.4 0.1 0.1 0.8 0.1 0.0
80 0.1 0.0 0.0 3.6 3.0 2.6 3.9 3.0 2.5 0.1 0.0 0.0 0.5 0.2 0.2 1.1 0.3 0.3

TABLE 9: Multi-Modal: IRFR (in %) with (0,1,2) bit ECC

# Unknown Key Size Known Key Size
of Lights Nolights Lights Nolights

Peaks 0 1 2 0 1 2 0 1 2 0 1 2
05 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
10 0.4 0.2 0.1 0.4 0.2 0.2 0.2 0.0 0.0 0.2 0.0 0.0
20 0.2 0.0 0.0 0.4 0.2 0.1 0.2 0.0 0.0 0.3 0.0 0.0
30 0.4 0.0 0.0 1.3 1.0 0.8 0.4 0.0 0.0 0.4 0.1 0.1
40 1.0 0.5 0.4 2.8 2.2 1.8 0.5 0.0 0.0 0.6 0.2 0.1
50 1.0 0.5 0.4 2.3 1.8 1.5 0.6 0.0 0.0 0.5 0.1 0.0
60 2.0 1.4 1.2 3.7 2.9 2.5 0.6 0.1 0.1 0.7 0.2 0.1
70 0.9 0.3 0.3 5.6 4.7 4.0 0.5 0.0 0.0 1.1 0.5 0.4
80 0.5 0.0 0.0 6.1 5.1 4.4 0.5 0.0 0.0 1.2 0.6 0.5

• Spreading keys across multiple people (could be dif-
ferent biometric modalities) can be useful for banking
or similar applications. This would also be useful in
scenarios where one would like to spread keys over
n users but only require anyk(< n) user biometric
samples to successfully retrieve the whole key.

• Spreading keys across multiple biometric modalities
like face, palmprint, iris etc. thus making biometric
authentication systems more resistant to social attacks.

One can easily spread the key over multiple pattern classes
by creating separate templates for each pattern class. How-
ever designing a single template such that query patterns

from the constituent pattern classes can each retrieve a part
of the bound key which can then be put together to retrieve
the whole key, makes the information bound to the template
more secure and also has lower storage space requirements.

Here we consider the problem of spreading a key over
different biometric modalities (classes) while still design-
ing a single template. We design the template by simply
assigning the same class label while formulating the filter
design with each training image having a shift determined
by the part of the key that is bound to that training image.
In our experiments we spread the key equally between the
two modalities (classes), however one can spread the key
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(a) Known Key Size (b) Unknown Key Size (c) Known Key Size (d) Unknown Key Size

Fig. 7: Information retrieval failure rate (in %) for multi-modal combination of PALMPRINT with (a,b) PIE NOLIGHTS and (c,d) PIE LIGHTS.

(a) Known Key Size (b) Unknown Key Size (c) Known Key Size (d) Unknown Key Size

Fig. 8: Information retrieval failure rate (in %) for multi-class combination (a,b) CMU PIE NOLIGHTS and (c,d) POLYU PALMPRINT

unevenly between the two as well.
For the multi-modal experiments we use faces and

palmprints as the two biometric modalities over which we
spread the keys. We generate random pairings of faces
and palmprints for our experiments since to the best of
our knowledge there is no publicly available multi-modal
database of faces and palmprints. Further since there is
no intrinsic relation in the images between faces and
palmprints except that both belong to the same person, it is
reasonable to create random pairs of faces from CMU-PIE
and palmprints from the PolyU database. For the multi-class
experiments we randomly pair users within each database
considered, while ensuring that the pairings are unique.

We report the average results of each experiment con-
ducted 10 times with a random key bound to the template
and random pairing for the multi-modal and multi-class
experiments for each run. We apply the filter individually
to the two biometric signatures, extract the keys from
each correlation output and combine the two to extract the
complete key. Since an error in the extracted key can be due
to either a single biometric signature or both, the accuracy
of the key would depend on the specific combination of the
biometric signatures among the test images, so we consider
all possible pairs to report our results.

Fig. 7 shows the plots of IRFR for the multi-modal
experiments when the key size is known and unknown.
Similarly, Fig. 8 shows plots of IRFR for the multi-class
experiments when the key size is known and unknown. The
key-retrieval rates fluctuate a lot unlike the experiments in
Section 6 due to the sensitivity of the algorithm to the class
pairs i.e., some image pairs are easier than other pairs for
key retrieval. This seems to suggest that given a choice
for forming class pairs, one has to choose the pairs more
carefully to optimize for IRFR. Table 9 and Table 8 list the
performance for a select number of peaks with known and
unknown key size for different multi-modal and multi-class
database combinations respectively. Observe that the IRFRs
for the multi-class and multi-modal case are much lower in

comparison with the single biometric scenario for the same
key length. The IRFR performance depends on the amount
of noise in the correlation plane which in turn depends
on the number of peaks in the correlation plane. Since the
number of peaks per image are fewer the IRFR performance
improves for these scenarios. So, in theory spreading the
key over a greater number of pattern classes will improve
the key retrieval rates for the same key size. However, more
constraints in the filter optimization problem reduces the
filter solution space resulting in a worse objective value.
From these results we conclude that the bottleneck to
binding longer keys to the template is the ability to detect
the peaks in correlation output as opposed to the number
of constraints. This trade-off that exists between the two
warrants a more careful study and is a topic for future
research. The FCIRR for the mutli-modal and multi-class
settings is observed to be zero when using the secondary
input and follows trends similar to Table 4 and Table 6
when the secondary password is not used i.e., the images
are not convolved with the random mask.

7.2 Limitations
The main limitation of the proposed scheme is its limited
robustness to large appearance variations as is evident
from the FRGC results. We believe that using CFs with
more distortion tolerance can help improve the algorithm’s
tolerance to larger image variations. In addition, as is
evident from section 6.3.4, the proposed technique has
limited robustness against dictionary attacks, at least for
short keys, when not using a password to convolve the
training images with a random mask. Designing classifiers
which are tolerant to dictionary attacks can help increase
robustness to such attacks and is a topic for future research.

8 CONCLUSIONS

We discussed a framework to bind information to image
patterns and to retrieve this information during authentica-
tion by embedding the information in the template designed
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to discriminate that pattern class from the other pattern
classes. We showed that we can robustly retrieve keys up
to 250 bits with a information retrieval failure rate (IRFR)
under 6% and nearly-zero false class information retrieval
rate (FCIRR). We further showed how the same framework
can be used to spread keys over multiple users and over
multiple biometric modalities and retrieve keys up to 800
bits long with a IRFR of under 4% and nearly-zero FCIRR.
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