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Abstract—We describe a template-based framework to bind class-specific information to a set of image patterns and retrieve
that information by matching the template to a query pattern of the same class. This is done by mapping the class-specific
information to a set of spatial translations which are applied to the set of image patterns from which a template is designed taking
advantage of the properties of correlation filters. The bound information is retrieved during matching with an authentic query by
estimating the spatial translations applied to the images that were used to design the template. In this paper we focus on the
problem of binding information to biometric signatures as an application of our framework. Our framework is flexible enough to
allow spreading the information to be bound over multiple pattern classes which in the context of biometric key-binding enables
multi-class and multi-modal biometric key-binding. We demonstrate the effectiveness of the proposed scheme via extensive
numerical results on multiple biometric databases.

Index Terms—Biometric Security, Correlation Filters, Biometric Key-Binding, Face Recognition, Palmprint Recognition
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1 INTRODUCTION match score to directly release the cryptographic key. This

MONG several approaches for image classificatioffroPlem can be mitigated by combining the two tasks of
A template-based methods, where a single template®9metric matching and cryptographic key release into a
designed from a set of gallery images representative of tRI89le step. However, the task of binding and accurately
pattern class, have been popular. Usually these templdig&ieving information from templates is challenging €nc
are stored in a database along with any class-specific infHerY pattemns (e.g., biometric signatures) are usuailsyno
mation and classification is done by matching this templaféner due to their natural variability or noise in the image
to the query pattern. However in some applications (e'gel_(’:qglsmon'process, which can result in errors in the infor
security related), we want this class-specific informatiofiation retrieved from the template.

(e.g., a cryptographic key corresponding to that classkto b Since we concentrate on biometric key-binding as the pri-
released only upon a successful match between the tempB@'Y application of our framework, we now describe some
and the query pattern and as such we want the proces$#ter desirable properties [1] of the designed templates:

information release to be an integral part of matching. 1) Revocability: Just as forgotten or stolen passwords
In this paper we describe a framework that allows us to  are easy to revoke and new passwords to re-issue,
securely bind class-specific information to image patterns  piometric templates should also allow the same.
and retrieve it only upon a succe_ssful match between ap) Security: It must be computationally very hard to re-
query pattern and the corresponding template. A natural  verse engineer the information bound to the biometric
application for our framework is biometric authentication template without an authentic biometric sample. Also,
(we use this application throughout this paper as an example it should be computationally hard to reverse engineer
to evaluate the effectiveness of the proposed framework),  the raw biometric sample from the template.
where upon successful biometric verification, some class-3) performance: In order to ensure that only an authen-
specific secret information, (e.g., a cryptographic key) is  tic query is able to release the key, the error rates i.e.,
released. Traditional biometric authentication systesis r the probability of failure to retrieve the keys for an
lease cryptographic keys when the output of the matcher,  authentic match and the probability of key retrieval
which compares the template of the claimed class and the by an impostor match should be low.
biometric signature, indicates an authentic match. Howeve 4) Diversity: Should have the ability to issue diverse

the security of such a system can be compromised by templates, obtained from the same biometric, to be
overriding the actual output of the matcher with a fake used in multiple applications.

. , In this paper, we will analyze a biometric key-binding
e The authors are with the Department of Electrical and Coreputf K th hibi h b ib
Engineering, Carnegie Mellon University, Pittsburgh, A%213. ramework that exhibits the above attributes.
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information (interchangeably referred to as key) to im-
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age patterns is to map this information into parameters pattern degrade the correlation outputs causing errors
for geometric image transformations like rotation, saglin in the retrieved key. However, an attractive feature

translation etc. (restricted to spatial translations oimy of CFs is the graceful degradation of the matching

this paper), transform the training images based on these output to noise, occlusions or other distortions in the

parameters and create a template using the transformed query. We take advantage of this by using error cor-

images. During authentication, the query is matched with  rection codes (ECC) to handle errors in the retrieved

the template and the image transformation parameters are key, leading to better key retrieval rates.

estimated from the output of the matching process from4) Extensions: Finally we show how the same key

which the information bound to the template is retrieved. binding framework can be used to spread secret in-
Given training imagess, Io, ..., Im and spatial trans- formation over multiple pattern classes by designing
lation parameters(a;,ap) (extracted from the key) the a single template. This allows us to spread the key

templatef is designed as a weighted sum of the transformed  over multiple users or multiple biometric modalities
training images with the weights obtained to optimize some  thereby enabling multi-user or multi-modal or both

appropriate criterion (like tolerance to noise etc.) multi-user and multi-modal biometric key-binding.
The remainder of the paper is organized as follows. We
f=> > Wilier;) (1) briefly review recent literature for binding information to
T

biometric signatures in Section 2, following which we

where W, is a data-dependent weighting matrix for eacfzeV'eW the CF design formulation used in this paper and

transformed image and — | & denotes a projective 'S extension to bind keys to the filter in Section 3. The
transformation ofg an ima;da by a projection raatjrixr key-binding framework is described in Section 4 and in

During the authentication stage, given only the tempfatesecnon 5 we analyze how secure the biometric and the

: : information bound to the template are. Experimental result
and an authentic queny, we try to extract the spatial trans- . . .
) : re presented in Section 6 followed by the multi-class and
lation parameters by cross-correlating the query and tRE" F ; . :
. multi-modal extensions of our framework in Section 7.
template, from which the key bound tpcan be extracted. Finallv we conclude in Section 8
The template is designed to facilitate the extraction of the y '
translation parameters from the cross-correlation output

Building upon the basic idea of cross-correlation fo2 RELATED WORK

matching a pattern with a template, many advanced corigismetric authentication being a natural application veher
lation filters (CFs) have been developed for shift-invariamne would like to securely bind and retrieve information to
object recognition. These filters can be designed to t@eragfq from image patterns, there have been many attempts to
appearance variability in the image, thereby facilitatinggqress this problem. The goal of all proposed methods is
stable retrieval of spatial translations. We extend théitra 1o account for the natural variability in biometric signeas

tional CF design principles to design templates which whilghile producing stable outputs. We briefly describe some
perfor_mipg the prﬁmary task. of_ pattern matching, also havg the main ideas proposed in the literature.
key-binding functionality built into them. Soutar et al. [3][4][5] proposed a correlation-based
A preliminary version of this work appeared in [2].xey binding algorithm for fingerprint-based authenticatio
where we introduced the general framework for bindinghey design a CF from representative training fingerprint
cryptographic keys to biometric templates. In this Pap@hages, set the CF magnitude to one for all spatial fre-
we present a more robust version of that algorithm Whic(ﬁ'uencies while adding to the filter a random phase array
significantly increases the length of the key that can Rgenerated from a password or another biometric modality
bound to the template, and improves the failure rate feg, example). Key-binding is done by linking the key to the
retrieving the information for an authentic match and thginarized correlation plane. Although we use CFs in our
information retrieval rate for an impostor input. Specifiga framework, our work differs significantly from this early
our main contributions in this paper are: work in both the CF design and the key-binding algorithm.
1) Robust Information Retrieval: Key retrieval from Another approach is to extract features that are relatively
the template for an authentic match is susceptible stable to appearance variations from the training patterns
natural variability in biometric signatures. We intro-which are then matched with the features extracted from
duce the use of a sparsity prior while matching tha query sample. Juels and Sudan [6] proposed a scheme
guery pattern with the CF for improved robustnesswhere the secret information is embedded in a fuzzy vault
2) Probabilistic Decoding: Instead of thresholding the VE with a set of feature§,. This secret information can
correlation output to determine the key bound to thiee recovered by presenting another set of featugs
template, we propose a maximum-a-posteriori probvhich is close toSa. This scheme has been evaluated for
ability (MAP) estimate of the key among candidatdingerprint-based recognition [7] and iris recognition [8]
keys by a probabilistic mapping of the correlatiorusing a polynomial for binding the key to the biometric
output thereby improving the key retrieval rate. features. Hao et al. [9] encode binary keys to iriscodes by an
3) Error Correction: While CFs offer some tolerance XOR operation between the two while using Hadamard and
to pattern distortions, large distortions in the queriReed-Solomon codes to account for variability in iriscodes
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Sutcu et al. [10][11] perform syndrome encoding using
a low density parity check (LDPC) code for fingerprint-
based matching. While fuzzy vaults offer some toleranc
to biometric appearance variability, they have some limi
tations [12][13] (for example, the secret information car.
be compromised if the same biometric data is reused in @ (b) ©

multiple syste_ms, _attack_s based on _statlstlcal analy_s'_'S ﬁé 1: Correlation Filter Target: (a) traditional correlationtput for
the structure in biometrics are possible and the originalthentic input with peak at center, (b) multi-peak corietabutput for
template can be obtained from the query pattern knowimgthentic input, (c) correlation output for an impostor ibpu

that it is an authentic match etc.), some of which are being

addressed [14]. A scheme where a hash is generated from

the features and matching is done by comparing the hastf&drelation output for thé—th image and\ is the regular-
features was proposed in [15]. ization parameter. This optimization problem can be solved

very efficiently in the frequency domain where the objective
function has the following closed form expression,

3 CORRELATION FILTERS

Since our key-binding framework presented here heavily Ny Ny
uses CFs, we provide a brief review of them. More details  min ZlfT)”(i)“(in_ 2 Zgi’f)“(i’ff+ng+,\fo (4)
can be found elsewhere [16]. A CF is a spatial-frequency fi= i=
array (equivalently, a template in the image domain) that is . _ -
specifically designed from a set of training patterns that af''€7€% denotes the Fourier transform sfand X denotes

representative of a particular class (a class could be &sin feAdlag(]jona:jl matrix whqse diagonal entrlessalre. the Elemt()ants
image or a single individual or even a group of individuals}. % and T denotes conjugate transpose. Solving the above

This template is compared to a query image by obtainir‘gt'm'zat'on problem results in the following closed form

the cross-correlation as a function of relative shift betwe <Pression for the CF,
the template and the query. For computational efficiency
this is computed in the frequency domainw, i.e., o

N -1
AL+ XiX:
2,7

Ny
Xi0i 5
i; .9.1 ®)
where| is the identity matrix. Depending on the choice
wherel (u,v) is the 2D Fourier transform (FT) of the queryof the ideal correlation plang, the solution to the above
pattern and-(u,v) is the CF (i.e., 2D FT of the template)optimization lead to the common unconstrained CF designs
andC(u,v) is the 2D FT of the correlation outpuix,y) like Unconstrained Minimum Average Correlation Energy
with * denoting the complex conjugate. Since the imag€dMACE) filter [17], Unconstrained Optimal Trade-Off
and their FTs are discrete-indexed, FT here refers to tBgnthetic Discriminant Function (UOTSDF) filter [18],
discrete Fourier transform (DFT) which is implementetMaximum Average Correlation Height (MACH) filter [18]
via the Fast Fourier Transform algorithm (FFT). The CFand Minimum Output Sum of Squared Error (MOSSE)
are usually designed to give a sharp peak at the centerfiiter [19]. The key-binding application in our work is
the correlation output plan&x,y) for a centered authentic enabled by an appropriate choice of the ideal correlation
query pattern and no such peak for an impostor. plane g. Fig. 1 shows an illustration of the difference
between the output for a traditional CF and the multi-
31 Multi-Peak Correlation Eilters constrained CF used to bin_d informatioq to the_ training
set. It must be noted that, if the query image is one of
One of the main differences between CFs and other clage training images with an unknown shiftixdy), then
sifiers is that, CFs are designed to not only discriminaighile the absolute locations of the peaks will shift by
between different object classes but to also produce shagx dy), the relative displacements between these multiple
peaks in the correlation output which aids in precisely locapeaks will not change when using good quality images. This
izing the target in a scene. This is achieved by minimizingroperty together with the flexibility in designing the filte

the Average Correlation Energy (ACE), along with somg exploited to bind the key with the biometric signature.
regularization, which serves as a proxy loss function to

optimize for peak sharpness (for notational ease expmEssio
are given for 1-D signals). Fd¥; training images we have,4 PROPOSED FRAMEWORK

The main idea behind our approach is to use CFs for
N 5 ) the dual purpose of pattern matching and binding class-
mf'”_ZlHXi @f—gillz+A[f] (3)  specific information to the template. During authenticatio
= the bound information is released automatically if the guer
where® denotes the cross-correlation operatigndenotes pattern is authentic. We now describe the enrollment and
the i—th image,f is the CF template ang; is the desired authentication stages of our framework.

C(u,v) = 1" (u,v)F (u,v) 2
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Fig. 2: Block diagram of the training stage. Green denotes the itptlie system, blue denotes the processing during trainidgoark denotes the
output of the training phase which is stored in the datab@ee.text for more details.

Gray Coding Ordering Location
A
100011
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Fig. 3: Example showing the mapping from binary key to peak locatior. ddhsider a one dimensional example with 16 possible loc{j@15).
We show how a 6 bit key is mapped to a location which is used asp@ut to the template design algorithm.

4.1 Key-Binding Framework depending on the unknown relative shift between the query
4.1.1 Enrollment and the training images. Therefore during training, we
hceompute the centroid of the specified peak locations which
IS stored in the database.
L . , During authentication once the peaks are identified, we
+ Training images represen_tatl\{e of the authentic Cl.asasnift the centroid of the detected peaks to the locatiorestor
Thes_e_ could be b|om_etr|c 8|gn§\ture_s under_ Varoys the database. Further, since the key is mapped only to
condmons (e.g., face images \.N'th d|ﬁerent IIghtIngIocations in the correlation plane, it can be recovered only
EXpressions etc.) expected during testing. up to a permutation if the order of the key segments is
+ Information or key to be bound to the tgmplate. ._not encoded. While other configurations are possible, we
< A secondary Input (g.g., pass_wo'rd or p.|n) IS r‘":‘qu'reégddress this issue by encoding the ordering along with the
for additional protection (details in Section 4.1.3). key in the filter itself by augmenting the kdy with the
The information or key to be bound is mapped intgrder of that segment. For example, in Fig. 3, we need two
locations in the correlation plane, by segmenting the k?jéaks (each taking on one of 16 locations) to represent two
into smaller segments of appropriate size (See Fig. 3 fglpit key segments with the extra bit required to encode the
an example). Leb be the bit representation of the key withyrdering of the key segments which reduces the number of
m bits, andq be the total number of segments. TiH key ey bits that can be represented by a given number of peaks.
segment Is given as, For images of sizé;xd, and a key withm bits, the number
of peaks and the window size are related as follows,

Fig. 2 shows the block diagram of the training phase of t
framework. In this stage the following are required.

ki[n] = b[n] -w[n— g] (6)
[ 1 ifo<n<r-1 ; q(logydi +log,dz) > m+glogy g (8
win] 0  otherwise (") P [mw )
q

wherer is the size of the window and is the window
shift. While other configurations are possible, in this workhere[] denotes the ceiling operation and the tering, g

we only consider non-overlapping windowd,= (i — 1)r. is the number of bits required to encode the peak ordering
Now each Segment of the kdy is mapped to a peak information. The multi-peak CF iS deSigned W|th the tl‘ain-

location in the correlation plane, therefore the number 819 images and the constraints obtained from the key as
peaks is determined by the length of the key to be boui#puts. This template is stored in the database along with
to the training images. We use these locations to get tH& hash value of the key (this is optional) computed using
ideal correlation outpuy in Eq. 3 @ value of one at the @ one-way hash function. Further we also do not allow the
peak locations and zeros everywhere plge design the locations of the constraints to be withén(typically 5 or 10

CF for the given class and key pair. For example, in Fid) our experiments) pixels from the boundary of the image.

3 the ideal correlation plang would have peaks (values

of one) at locations 3 and 10 and zeros everywhere eléel-2 Authentication

Ideally the multi-peak CF should produce correlation peakdg. 4 shows a block diagram of the authentication process.
at those locations in response to a centered authentic imagethis stage, the query pattern is provided along with

For an un-centered query pattern, the peaks shift globafigcondary input and a claimed identity in a verification
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Image . Retrieve Hash Auth or
Probe Transfor- Correlation ~ Release Key
. Key of Key Impos?
mation

Secondary Input @ Hash
of Key

Fig. 4: Block diagram of the testing stage. Green denotes the inpuat the user, yellow denotes the data stored in the database denotes the
processing during the testing stage and pink denotes thribat the system. See text for more details.

scenario. The query is then cross-correlated using the CF

corresponding to the claimed identity. If the query is i
authentic, the resulting correlation should have peaks at ~d - -

the right locations (except for a possible global shift). We Fig. 5: Transformation by a random convolution kernel.

then shift the centroid of the detected peaks to the centroid

stored in the database. From the new peak locations, . o )

the information bound to the template is reconstructeBfobe image (this is shown in [21]). Therefore, for an
The correctness of the retrieved key can be confirmed Bythentic match the effect of the random mask is completely
comparing the stored hash value with the hash value of thgutralized and only the underlying biometric features
recovered information. Only when the two hashes matchominate the matching process. However, for an impostor
is the information released. For an impostor query imag@atch the probe random mask does not neutralize the
key recovery would fail due to the absence of any shafgndom mask used while training and hence the matching
peaks in the resulting correlation plane when either tH¥OCeSS is dominated by the random masks and therefore
secondary input is incorrect or the query does not beloff§Proves the non-match performance.

to the claimed class or when both are incorrect. Note that

the hash value is used only to confirm that the recovergth Robust Key Retrieval

information is correct. In situations where such a guamntB : . . . .
. . .~ . During decoding the main challenge in recovering the
is not required or when there are other ways of confirmin

Idformation bound to the template is in robustly identifyin

the accuracy of the retrieved key (e.g,, by using the k?ﬁe peaks and the peak locations in the correlation plane

retrieval confidence measure described in section 4.2.2 FPom which the key is recovered) since each point in
decide the correctness of the retrieved key), the hash of the y P

key is not stored in the database along with the template.e correlation output is a potential peak. This proble_m IS
eéxacerbated by the presence of false peaks due to vagabilit

4.1.3 Image Transformation (we will refer to this variability as noise) in the correlai

The main purpose of parametrically transforming the inf2lane due to variable imaging conditions, pattern varigbil
ages before being used to design the CF is to prevétS€nsor noise. This noise .Ieads to errors in identifying
information leakage from the template and to help creayhich locations in the correlgtlon plane correspond to peak
diverse and cancelable biometric templates from the saffd @lso errors in the locations of the detected peaks. We
biometric samples. Examples of such parametric transfor@ddress these errors by first denoising the correlatioreplan
previously proposed in the literature include non-inseti 2S _much as possmle_followmg which we use probabilistic
geometric image transformations [20], convolution witfgStimates to determine the number of peaks and peak
random masks for cancelable CFs [21] and data projecti&?at'ons and _flnally (_:orrectmg for any residual errors in
onto random matrices [22]. The “secondary input” is uséf#€ Peak locations using error correcting codes.

as the parameter for the image transformations. In this

paper we adopted the technique introduced in [21]. Usifg2-1 Exploiting Sparsity for Denoising

a user provided password as a seed, a matrix with randdve address the noise in the correlation plane based on the
entries is generated which is then convolved with the gallefollowing observation. For an authentic match the resgltin
images. The resulting images (see Fig. 5 for an examptrrelation plane would have only a few high values (peaks)
are then used to design the CF for that user. During testiremd most of the correlation plane would have low values
the probe image is supplied along with a password whig¢hoise) i.e., the ideal correlation plane would be highly
determines the random mask. This probe is then convolvegarse. Therefore, instead of reconstructing the coiwvalat
with the random mask and then correlated with the CF pfane by an inverse FT (which corresponds to minimizing
the corresponding claimed identity. If the probe passwotte I, norm of the correlation output), reconstructing the
matches the password provided by the user at trainingprrelation plane by minimizing thg norm of the resulting
the effect of the random mask is canceled out during tlerrelation output will result in a less noisy correlation
correlation operation between the CF and the “transformeglane. We remind thaF (u,v) and I(u,v) denote the CF
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and the Fourier transform of the test image wherndv 4.2.2 Probabilistic Framework for Decoding

denote the 2-D spatial frequencies. lggk,y) andC(u,v) Once the correlation plane has been obtained either by
be the ideal target correlation OUtpUt for an authentic mat§0|ving Eq 2 or Eq 13, the peaks in the correlation p|ane
in the spatial and spatial frequency domains respectiveléed to be identified in the presence of noise. During
i.e., €(x,y) would have large non-zero values at the desiregithentication if the number of key segmeqtare known
peak locations derived from the key and zeros everywhewgrresponds to knowing the size of the key) then one can
else. We model the correlation plane obtained from the filtgfmply pick theq highest peaks in the correlation plane
F(u,v) and query image (whose FT I$u,v)) as a noisy and extract the information from the corresponding peak
version of the ideal target correlation plane i.e., locations. However, in many scenarios the length of the
key is unknown, in fact we show in Section 5 that hiding
- the length of the key makes the information more secure.
C(u,v) =1"(Uu,V)F (u,v) =C(u,v) +n(u,v) (10) I this case every location in the correlation plane is valid
hence there are many possible keys that can be extracted
from the correlation plane. One can simply determine if a
particular location is a peak or not using a hard threshold
on the correlation values. However, the noise level in the
correlation plane varies from query to query due to image
variabilities rendering a fixed threshold suboptimal inrter
. . ] of separating the peaks from noise. Therefore we perform
where© ¢ RY is the desired correlation plans, ¢ coN 4 probabilistic analysis of the correlation plane to detect
is the DFT matrix andC € CN is the Fourier transform of anq identify peaks. We extract the most likely key from
the correlation plane obtained from the designed CF aggh correlation plane by estimating the most likely number
the query image anfi©||o is a pseudo norm which countsyf neaks in the correlation plane. The key idea is to
the. nu.mber of non-zero values in the correlation pléne probabilistically map either a single value or a group of
which ideally must correspond to the number of peaks. TRgjyes of the correlation output to a posterior probability
problem in Eqg. 11 is NP-hard but it has been shown thgg; e on the existence of a peak or a group of peaks.
under some conditions [23] replacing theorm with thel1  For anN dimensional correlation plane, letbe a vector
norm will result in the same solution faufficientlysparse ¢ hypotheses withh being the hypothesis that theth
[24] correlation outputs, i.e., element is a peak;h; the hypothesis that thieth element
is not a peak, let be the correlation values ard be the
correlation value at theth element.

N(=did2) dimensional correlation output as follows,

é:argnginHC—A@H% st [[Oo < To (12)

é:argrginHC—A@H% SL|O1<Ty (12)
Further since the desired sparsify (and Ty) is unknown q° = arg rr;am(hq\C) (14)
we solve the followind, — 11 problem (callecbasis pursuit q q q
denoising[25] - BPDN), p(htic) 0 p(clh®)p(h) (15)
p(ch?) = p(clhd ﬁh%) (16)

1 2 wherep(h9) is the probability ofg peaks in the correlation
min >[|C —AG[2+1[[O]1 (13) plane,Q={ij1<i<q}, O={ijqg+1<i<N}, hdis the
) _ hypothesis that thg highest correlation values are peaks,
We use theSparse Reconstruction by Separable Approm_mgg is a q dimensional vector of hypothesis corresponding
tion (SpaRS.A).[ZG] algorithm to solve Eq. 13. Dependingy” there beingq peaks in the correlation plangy(c|h9)
on the similarity of the query to the training pattern$epresents the likelihood of the correlation plargiven the
used to design the template, different valuestofesult pypothesishd which is learned ang(hd) is the prior on the
in dlffere_nt levels qf _den_0|s_|ng in the resulting cqrredmﬂ hypothesis that there axgpeaks in the correlation plane.
plane. Smce denoising is important for kgy retrieval, Weypically since the dimensionality df can be very large,
automatically choose the value af that gives the best nogeling this joint distribution is not feasible. Theredor

denoised correlation plane. This is done by solving EQ. 13 make the following simplifying assumption,
for an ascending series of values forStarting from a low

value of 7, we check at every iteration if the sparsity of p(c/hd) = p(chth) p(%‘ﬁhq@) (17)

the resulting correlation plane is more than the sparsity

in the previous iteration. We continue this until BPDNvherecg is defined just likehd. We further assume that,
returns an all zero correlation plane, which happens whére correlation values which are not peaks have statistical
the regularization costr(|®||1) is greater than the noise indistributions that are identical and independent of each
the correlation plane. After this the algorithm returns thether. This is a reasonable assumption since the cornelatio
solution of the previous iteration, since that is the iterat values which are not peaks are caused by noise. This is
with the best denoised correlation plane. Experimentallypwever not true of the correlation values which are peaks
this simple idea was found to work very well. since all of them are actually caused by the same image.
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N that the degradation pattern (bit errors) in the retrieveg k
clhd) — hd  |—hd 18 is proportional to the degradation pattern (errors in peak
p(elh™) = plcq| Q)i:ﬂlp( =) (18) location) in the correlation plane. During decoding once
the peak locations are identified, we decode the gray code

On observing the empirical distributions (from experiz | piece together the original key.

ments on a small dataset of face images), we found thaRNe consider two ways of applying ECC, at the segment

a multivariate normal distribution and a univariate norm?I | f h hat the kev i d i q
distribution are reasonable approximations fofcg|hg)) evel for each segment that the key IS mapped into an
Q’ at the key level before mapping it into segments. In the

and p(c|—h%) respectively where is the correlation output .
i . . former scenario, one can guarantee to correct every segment
at locationh. Further the prior on there being a peakhat )
up to a selected number of errors and is a more natural

is p(h9) = 3 since the distribution of the peaks in the cor-, . .
. N~ : . ...~ choice since errors happen at the segment level. However
relation plane is uniform. We model the prior distribution

g ) s not every segment is in error, hence in the latter scenario,
for each hypothesik® as a binomial distribution, ) :
we can achieve error correction performance comparable to

N N the former scenario but with less redundancy. For both the
p(h) = <q> p(h)Ip(=h%)™1 (19)  cases we use binary BCH codes (and shortened binary BCH
) ) codes where needed) since they are particularly well suited
where q € {0,1,...,N}. During the learning stage thety o problem. Although we do not pursue it in this paper,
following parameters for our models are estimated frofe correlation peak values can be used as soft information
a separate generic training set. for soft decision decoding to improve ECC performance,
1) p-n and o for p(c|=hv) perhaps at the cost of increased computational complexity.
2) pq andxq for p(cqlhd)
From empirical eigenvalue analysis of the covariance matrj
2o, we observed that there is only one dominant eigenvalue. SECURITY ANALYSIS
Hence in practice instead of the whole covariance matrix vikeeping the key and the biometric signature secure is
store the largest eigenvalue and its corresponding eigenvene of the goals of biometric key-binding. In this section
tor. Since the size of the covariance matrix gives away thée analyze the security of the information bound to the
number of correlation peaks, we create a single covarianegnplate and the biometric signature itself.
matrix for the maximum allowable peaks and use the In the scenario where a secondary input is used to
sub-matrix depending on the number of peaks. Further ifap the image into another space, both the biometric
practice instead of searching over all possiblewe can signature and the secondary input have to be correct to
use a simple heuristic (number of peaks correspondiagcurately retrieve the information which effectively egv
to maximum change in the correlation values sorted s a two-factor authentication scheme. Therefore if the
descending order) to find the most likely number of peaksiometric signature is compromised, the security of the
in the correlation plane and do a local search. Once W&lden key depends on the entropy of the secondary input
find the number of peaks, we find the locations of thand also on the quality of the biometric signature stolen
corresponding peaks to retrieve the key from the templatgy the adversary. If the secondary input is compromised
The probabilistic treatment of the correlation plane alspe security of the hidden key depends on how well the
provides a confidence measure for key retrieval from thgiversary estimates the biometric signature. If the hidden
correlation plane in scenarios where this might be usefukey is compromised, the adversary can recreate the signal
_ _ ) x used to design the template up to an image mapping (if a
4.2.3 Robust Decoding with Error Correction secondary input is used). If the image mapping is however
Due to correlations between neighboring pixels in images non-invertible transform as presented in [20], then the
and noise in the correlation plane, the peaks in the corretsriginal biometric signature cannot be recovered.
tion plane are not very sharp resulting in the peak locations
sometimes being off by a couple of pixels (Note that these )
are errors remaining after accounting for any global shitl Brute Force Security
in the correlation peaks that arises due to relative shifis this scenario the adversary has access only to the
between the query and training patterns). This results templatef and the centroid of the peak locations. Hence
errors in the key retrieved from the corresponding pedke adversary can retrieve the key only by guessing it i.e.,
locations. We use ECC to handle such errors. To ensweessing the number of peaks in the correlation plane and
that the size of the parity bits does not reveal the length tife locations of the peaks subject to constraints on where
the key, we pad all keys up to a known and pre-determin@udthe correlation plane the peaks can occur (the adversary
maximum key length and during decoding the key lengthill have to guess the locations of onty— 1 peaks since
is determined by the number of peaks detected in tliee centroid of theg peak locations is known). Under the
correlation plane. Further since even a single pixel errassumption that the adversary knows the number of pgaks
in the peak locations may result in multiple bit errors ifn the correlation plane (corresponds to knowing the length
the recovered key, we apply gray coding on the key whidf the key), the key space in bits that the adversary has to
is then used in the template design process. This ensusearch over is,
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_ (di—¢)(d2—¢)
L(9) = (a—1)log, {q (20) max  fT(xer) (22)
wheree is the size of the correlation output boundary region st. VIe(a,a),0<a;<d;,0<a,<d
that is ignored. Thé% term quantifies the number IIX|l2=1

of available peak locations for each peak and the number

of peaksq for a key of lengthm is governed by Eq. 9. This is a convex problem ix for a givenl and can be

In the scenario where the adversary has no knowledgeSéfved to obtain an imag which maximizes the match
the length of the hidden key (in scenarios where the k&gore for the given™. Sincel is defined over a finite
length is fixed we can augment the key with random dag®ace, only a finite number of convex problems need to

of arbitrary size which is then encoded in the template)€ solved. However this does not guarantee that correlating

locations from which the key bound to the template can
o (d \(d ) be retrieved. In fact in the absence of a modelXpthe X
L(qx) = Z (q—1)log, { 1 2 ] (21) Which maximizes the ma.tch score is the complex conjugate
q of the templatef from which the key cannot be retrieved.

. . However in a more realistic scenario the adversary has

wheregx is the actual (unknown) number of peaks in the ) NXt :
: . access to an image model=DA whereD € R™ is a

correlation plane given by Eq. 9.

Through the rest of this paper we quantify and repoﬂlctlonary forx (e.g., eigenfaces for a face database from

brute force security assuming that the adversary knows 4 publicly available face database.) which helps reduce

) . . . rae search space frome RN to A € R!. In this scenario
number of peaks in the correlation plane (i.e., key size) al . L . .
.the adversary can estimate an imagevhich potentially

is therefore a conservative estimate. The above expression ; .
. elps retrieve the key bound to the template by solving,
however do not account for any decrease in key security

when using ECC to correct for errors in the detected peak

=1

locations. When using ECC, the security of the key reduces max fT(X9 M) (23)
by an amount equal to the error correction capability of the A

code for a properly chosen code, i.e., fomait key, t bit st.  VIe(a,a),0<a<d,0<a<d
error correction per segmentt(®it error correction per IIX|l2=1

peak for the two coordinates) amppeaks, the security is X — DA

given byL(q) — 2tq for perfect codes. However, BCH codes

are not perfect codes (i.e., one can sometimes correct morégain this is a convex problem ir for a givenr, in
thant errors up to a maximum oft2rrors at the expensefact we can easily derive a closed form expression¥for
of computational complexity), therefore we report the angn terms off andD for a givenT". Therefore the adversary
[L(q) — 4tq,L(q) — 2tq] for our experiments. can estimate an imageé for a large but finite number of
values ofl” and pick the image with the highest correlation
value. This estimated imagecan now be used to retrieve

5.2 Dictionary Attack .
i o o the key bound to the corresponding template
We now consider a more realistic attack which is based

on a dictionary of biometric signatures mined from some o
data source. It must be noted that a dictionary attack carp Substitution Attacks
be successful only if the secondary input is known so &e now make a brief mention of a particular kind of
to compensate for the convolution with the random maséttack against which the proposed algorithm is unsuitable.
Therefore in addition to the template (CF of a particuldwhen an attacker has access to a user's secret key he/she
user) we also assume that the adversary has access toctre design a new template using his/her own biometric
secondary input (password in our case). Since correlatisignature and password to masquerade as the said user
is a linear operation any query which is a weighted lirvia a simple substitution attack or a blended substitution
ear combination of the training images will result in attack. However, substitution attacks are possibly if the
correlation output with sharp peaks from which the kegttacker has access to the secret key that the biometrics are
can be retrieved. The goal of an adversary is to estimdieing used to protect. Such attacks enable the adversary to
an unknown number of transformatiofs,... ¢ givenf effectively bypass the whole biometric matching algorithm
which can be done only by estimating any point on thiey simply adding himself/herself into the system to release
unknown hyperplane formed by the training images or thbe secret key. The proposed algorithm is ineffective again
subspace on which the training images lie on. such attacks and as such is unsuitable for scenarios where
Let the match score be the maximum correlation valuthe adversary has access to the secret key that the template
i.e., max{fT (xolN)|l € (ag,a),0<a; <d;,0<a <dp} is supposed to protect. While templates can be designed
which is convex inx and non-convex if, then givenf to prevent two different users to release the same keys,
an estimate of the sign&l can be obtained by solving thesuch techniques might not be scalable and are beyond the
following optimization problem, scope of this paper. A simpler solution to prevent such



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

blended substitution attacks would be to hash the template left, one with illumination from the right and the third
or digitally sign the template to ensure that it has not has illumination from the front among 20 different
been tampered with. The security of the stored hash of the illumination patterns and use the rest for testing.

template is now of paramount importance. 3) PolyU: The PolyU palmprint database [29] consists
of 386 classes with over 7500 images collected over
6 EXPERIMENTAL RESULTS two sessions with about 10 images per session. We

To demonstrate the effectiveness of our scheme, we conduct Lasré?jotrﬂg r(::;ﬁgr 1,[2;/;”05 the images for training and
s_eve_ral experiments where we blnq randqm_data to _blomet-4) FRGC: The Face Recognition Grand Challenge
ric signatures and attempt to retrieve this information by database [30] consists of about 50,000 recordings
matchin_g against query pattems. Further tq demons_trate th divided into training and validation p;artitions. The
generallty_ pf our framework, we use two different biomet- validation set is further divided into a target set and a
ric modalities, faces and palmprints to test our proposed query set of 466 people. For our experiments we used
framework. Since biometric key-binding is expected to be a 410 class subset of tﬁe target set (after eliminating
used for applications such as access control, e-commerce all classes with fewer than 6 images) with a total
etc., it is reasonable to expect user cooperation while of 15,804 images. We randomly chose 25% of the
presenting his/her biometric, therefore in our experirsent imagés for traininé and used the rest for testing

we consider only illumination and expression variation in ‘

the query images. lllumination is one variable that cannot )

be controlled well even with co-operative users and hene2 Pre-Processing

became the impairment variable in this paper. Since bindige process the face databases by first running an eye-
and retrieving information is the goal of the proposedetector to get the eye locations which are used to register
framework, we report performance in terms of informatioand size normalize the images. Similarly we process the
retrieval failure rate (IRFR) and false class informatiopalmprint images as in [31] to extract and register the
retrieval rate (FCIRR) i.e., the rate at which a false clagmlmprint from the full images.

guery pattern can retrieve the information of another patte

class due to the similarities between the two pattern classg 3 Experiments

Ideally we would like FCIRR to be zero, since it is no . . N .
e conducted numerical experiments with images of size

desirable to have an impostor retrieving t'he information c12§x128 to bind randomly generated keys of length be-
some other user. For the sake of comparison we also regor

the results of standard biometric authentication in thmfortween 20 (corresponds to 2 peaks) and 770 (corresponds to

of Equal Error Rate (EER) and the Rank-1 identificatioﬁO pea!<s) bits (images of larger size allow us to bind Iong.er
: . : - eys since more peaks can be packed in the correlation
rate without biometric key-binding.

plane). Each experiment is conducted 10 times since the

keys bound to the template are generated randomly and

6.1 Databases we present results averaged over these runs. Table 1 shows

1) CMU PIE: The CMU-PIE database [27] has imageshe key sizé, brute force security with no error correction,
of faces with different poses, expressions and illiange of brute force security with 1 bit and with 2 bit
mination variations. We present results using frontarror correction per peak for different number of peaks
images of neutral expressions with different illumifor images of size 128x128 and correlation outputs of size
nations, we use both the PIE-lights and PIE-noligh856x256. As explained in Section 5.1, we report a range
where ambient lights are on and off respectively. Thier the brute force security with error correction since the
PIE-lights and PIE-nolights databases consist of G&des we chose for error correction are not perfect codes.
classes with 24 images per class and 66 classes withe to space constraints we do not report in this paper
21 images per class respectively. In our experimentse results of our experiments with constrained filters.(e.g
we used 3 images for training and the rest of th®IACE[17], OTSDF[32] etc.) and other unconstrained fil-
images for testing. The 3 training images were choseers (e.g., MACH[18] etc.) and results with error correntio
such that one has illumination from the left, anothesn the full key instead of error correction on each key
has illumination from the front and the third hasegment. However, these results follow a similar trend to
illumination from the right i.e., indices 3,7 and 16. the results reported here with the other CFs doing worse
2) CMU Multi PIE: The CMU Multi-PIE database than UMACE filter in terms of IRFR.

[28] is an extension of the PIE database. It has
a total of 337 subjects. As in PIE, different faces.3.1 Biometric Authentication
poses, expressions and illumination variations wekgfe first present results without binding information to the
recorded. We present results using frontal imagesFs, i.e., the CFs are designed to produce a single peak
of neutral expressions with different illuminations of

which there are over 23000 images. We use 15%!. Unfortunately due to additions like ECC and ordering infation
the key segments it is difficult to ensure that key sizes angeps of

pf these images _for training_Wh_iCh (fOrr.eSpondS to g So if one requires keys which are powers of 2, one has to aite pf
images per session, one with illumination from thene bit sequence as a pad.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

TABLE 1: Brute Force Security and with 2 bit ECC, i.e., no impostor was able to retrieve

F?OL ke(%_t'si)ze - Echn)Jte (Fl°L0t9 sgél;rity(ébg?Ecc) the key of some other user, since to retrieve the key we
eaks IS (0] I I . . . .
05 68 53 @3 43) 13, 33) not only require the_ right sec_ondary input (password in our
10 126 111 (71, 91) (31, 71) case) but also require a partial match between the template
20 233 217 (137, 177) | (57, 137) and the query and also require all the peaks to be at the right
4318 225 2(1)‘71 g%” gg% gi’ ;?1‘71; locations which is unlikely for an impostor input because it
50 517 495 (295, 395) | (95, 295) is harder to identify the number of peaks due to high levels
gg ggg 22411 831’ 32411; 8&1‘, gg}lg of noise in the correlation plane. Further even if the number
80 774 746 (426: 586) (105: 426) of peaks is correctly determined, the pea_k Iocauon;_ have
errors which are beyond the error correction capability of
TABLE 2: Biometric Recognition Rates (in %) the codes used. Not using the secondary input does result
PIE Lights | PIE Nolights | Muli PIE | PolyU | FRGC| N non-zero FCIRR_ although the IRFR remains una_ffected.
EER 0.07 0.5 547 023 W Under this scenario Table 4 lists the FCIRR for different
DA 100 99.9 99.3 99.7 | 935 databases as we vary key length and the amount of ECC.

While the FCIRR is high for shorter keys, it quickly drops
down reaching zero for longer keys. Note that since we
for an authentic match at the center of the correlation planee an adaptive threshold instead of a fixed threshold to
and no such peak for an impostor. We report the Rankedktermine the peaks and peak locations in the correlation
identification accuracy (IDA) as well as the Equal Erroplane, there is no trade-off between IRFR and FCIRR.
Rate (EER) for all the databases used for our experiments
in Table 2. The results suggest that the databases use®.®3 Unknown Key Size

our experiments are relatively easy (excepting FRGC) fefere we consider the scenario when the key size is un-

CF based recogpnition. known which corresponds to unknown number of peaks
. in the correlation peaks and we use the MAP estimate
6.3.2 Known Key Size described in Section 4.2.2 to determine the number of peaks

Here we present results when the key size is known the output correlation plane. In this case errors occur
(nothing else is known about the key) which corresponds &ither due to the wrong number of peaks being detected or
knowing the number of peaks« in the correlation plane. the detected peaks being in the wrong locations or both.
Hence we retrieve the key simply from the locations coWhen the number of peaks detected is wrong, the hash of
responding to thepx highest peaks i.e., the MAP estimatdhe retrieved key and the original key do not match, so
described in Section 4.2.2 is not required to determine thigese errors are simply added to the errors remaining after
number of peaks. Errors in this case are caused by theor correction. Fig. 6¢ and Fig. 6d shows plots of IRFR
peaks being in the wrong locations, which are corrected figr CMU MPIE and PolyU Palmprints respectively as a
ECC. Fig. 6a and Fig. 6b shows plots of IRFR for CMUunction of the number of peaks in the correlation plane and
Multi PIE and PolyU Palmprints respectively as a functiothe error correction capability going from no ECC to full
of the number of peaks in the correlation plane and tHeCC. Table 5 lists the IRFR for a select number of peaks.
error correction capability going from no ECC to full ECCThe key retrieval performance is worse compared to the
Table 3 lists the IRFR for a select number of peaks for thecenario where the key size is known as one would expect.
different databases. Key retrieval performance is depgndélowever this should also make it harder for an impostor
on the sharpness of the peaks and the quality of the qudnyretrieve somebody else’s key as is evident from FCIRR
so the majority of the errors made with shorter keys afgee Table 6) when not using the secondary input. It must
due to the poor quality of the query image while majoritpe noted that FCIRR is still zero when using the secondary
of the errors with longer keys are caused by reduced pealask to convolve the images with the random mask.
sharpness which in turn is caused by increased noise in

the correlation plane. As expected we see that the kBy3.4 Dictionary Attack

retrieval failure rates increase with the size of the kefrom the perspective of an adversary, we also conducted
Ideally we would like to maximize both peak sharpnessxperiments to retrieve keys bound to the templates of
and number of peaks in the correlation plane. Both thesebjects in the CMU PIE-nolights database via a dictionary
requirements cannot be achieved simultaneously since thattack. We consider two scenarios, one where we design the
exists a trade-off between how many peaks one can pauoklti-peak CFs using the raw training images and the other
in the correlation plane and the sharpness of the pealshere the CFs are designed using training images that are
Error correction (even just 1 bit error correction) helpsonvolved with a random mask (obtained via a password).
improve the performance and dramatically in the case bf each of these cases we use three different dictionaries,
palmprints and FRGC. Since FRGC images exhibit harshBICTA: all images of CMU PIE-nolights, DICTB: all
illumination and expression variations compared to CMignages of CMU PIE-lights and DICTC: 5000 randomly
MPIE the performance on FRGC is worse compared &elected images from FRGC. DICTA includes the training
CMU MPIE. Most importantly when using the secondarymages used to design the templates, DICTB has images
input we observe zero FCIRR with no ECC, with 1 bit EC®f the same subject corresponding to the templates but
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TABLE 3: KNOWN KEY LENGTH: IRFR (in %) with (0,1,2) bit ECC

11

# of Lights Nolights Multi PIE Palmprint FRGC

Peaks 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
05 0.38 0.00 0.00| 1.64 0.00 0.00| 0.19 0.02 0.01| 10.00 0.48 0.11| 14.47 0.57 0.14
10 121 0.00 0.00f 291 0.00 0.00f 046 0.07 0.03| 1865 1.05 0.32| 30.08 211 0.53
20 197 0.00 0.00f 437 0.00 0.00f 1.07 025 0.17| 31.23 2.65 1.14| 59.15 6.70 1.68
30 242 0.00 0.00| 5.74 0.00 0.00| 1.86 0.61 0.47| 40.40 4.12 2.35| 80.36 14.68 4.39
40 3.48 0.00 0.00{ 737 0.64 046/ 321 134 1.11| 47.38 5.89 3.90| 92.96 25.92 9.49
50 400 0.00 0.00f 856 1.18 1.18/ 488 250 2.24| 53.18 8.00 5.86| 97.88 36.94 15.63
60 484 0.00 0.00] 11.08 3.09 227 7.32 440 4.04| 58.23 10.34 8.32| 99.62 51.92 26.89
70 538 0.03 0.03] 1357 4.83 467/ 994 6.60 6.10| 6241 1320 11.15 99.95 64.56 39.11
80 6.21 0.08 0.08] 17.66 8.32 7.52| 13.00 9.30 8.78| 65.87 15.26 13.49 100.0 76.26 53.31

TABLE 4: KNOWN KEY LENGTH: FCIRR WITHOUT RANDOM MASK (in %) with (0,1,2)bit ECC

# of Lights Nolights Multi PIE Palmprint FRGC

Peaks 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
05 13.30 13.30 13.30, 9.16 9.16 9.16| 22.42 2242 2242 044 044 044| 2781 2781 27.81
10 2.78 2.78 278| 113 113 1.13]| 9.99 9.99 9.99| 0.02 0.02 0.02] 13.76 13.76 13.76
20 0.21 0.21 0.21| 0.03 0.03 0.03| 2.84 2.84 2.84| 0.00 0.00 0.00| 4.60 4.60 4.60
30 0.02 0.02 0.02| 0.00 0.00 0.00f 0.76 0.76 0.76 | 0.00 0.00 0.00| 0.88 0.88 0.88
40 0.00 0.00 0.00| 0.00 0.00 0.00[ 0.19 0.19 0.19| 0.00 0.00 0.00( 0.11 0.11 0.11
50 0.00 0.00 0.00| 0.00 0.00 0.00[ 0.03 0.03 0.03| 0.00 0.00 0.00[ 0.02 0.02 0.02
60 0.00 0.00 0.00| 0.00 0.00 0.00f 0.00 0.00 0.00| 0.00 0.00 0.00f 0.00 0.00 0.00
70 0.00 0.00 0.00| 0.00 0.00 0.00( 0.00 0.00 0.00| 0.00 0.00 0.00[ 0.00 0.00 0.00
80 0.00 0.00 0.00| 0.00 0.00 0.00f 0.00 0.00 0.00| 0.00 0.00 0.00f 0.00 0.00 0.00
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(a) Multi PIE (known) (b) Palmprint (known)

(c) Multi PIE (unknown)

(d) Palmprint (unknown)

Fig. 6: Information retrieval failure rate (in %) with known key sita,b) and with unknown key size (c,d).

TABLE 5: UNKNOWN KEY LENGTH: IRFR (in %) with (0,1,2) bit ECC

# of Lights Nolights Multi PIE Palmprint FRGC

Peaks| 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
05 0.38 0.00 0.00] 1.64 0.00 0.00| 0.32 0.14 0.13| 10.04 0.53 0.18| 14.47 0.66 0.25
10 1.21 0.00 0.00] 291 0.00 0.00 | 0.59 0.22 0.19| 1865 1.15 0.53| 30.21 2.46 111
20 197 0.00 0.00| 4.37 0.00 0.00| 1.32 0.57 0.52| 31.29 311 1.98| 59.69 9.39 5.90
30 242 0.00 0.00f 5.92 0.46 0.46 | 2.57 1.54 1.47| 4050 5.26 412| 8149 25.63 20.68
40 3.48 0.00 0.00| 7.83 2.19 219 | 4.73 331 3.23| 4752 815 7.12| 93.93 53.05 49.01
50 4.00 0.00 0.00| 9.75 4.28 4.28 | 7.64 6.04 5.95| 53.36 11.70 10.67| 98.66 78.48 76.40
60 484 0.00 0.00] 1418 8.25 8.08| 11.73 9.92 9.79| 58.49 15.64 14.84) 99.83 93.38 92.76
70 553 0.26 0.26| 19.39 14.40 14.30] 1592 14.07 13.92 62.80 20.14 19.47| 99.99 98.51 98.36
80 6.36 0.67 0.67| 25.68 20.33 20.26| 20.84 18.94 18.80] 66.31 24.12 23.68 100.0 99.74 99.68

under a different illumination setting and DICTC does ndtey sizes bound to the template). Dictionary attacks atjains
contain any images corresponding to the template subjedtsnplates bound with longer keys result in poorer image
The dictionary attack is performed by solving Eq. 23 foestimates which in turn lead to poorer key retrieval rates.
each template for every value of shift in the image (i.e.,

all possible values of) to estimate an image maximizing
the matching score. This estimated image is then used7to DiscussionN

retrieve the key from the corresponding template. In the this section we discuss some extensions to the general
latter scenario, we were unable to retrieve correct secfeimework and some limitations of our algorithm.

key bound to any of filters designed for the experiments

described above since the random mask is unknown to the ] ]

adversary. Table 7 lists the key-retrieval rates in the tarm/-1 Spreading Keys over Multiple Patterns

scenario averaged over 10 different runs. As expected thiee ability to spread the keys over multiple pattern classes
quality of the dictionary determines the success rate df suis a very powerful feature to have since it opens up biomet-
dictionary attacks. Interestingly the efficacy of dictiopa ric key-binding to many different security configurations.
attacks also depends on the number of peaks (and heNeeable examples of such applications are,
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TABLE 6: UNKNOWN KEY LENGTH: FCIRR WITHOUT RANDOM MASK (in %) with (0,12) bit ECC

12

# of Lights Nolights Multi PIE Palmprint FRGC
Peaks 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
05 285 285 285/ 098 098 098] 483 483 483 0.02 0.02 0.02] 23.18 23.18 23.18
10 0.22 0.22 0.22| 0.03 0.03 0.03/ 097 0.97 097/ 0.00 0.00 0.02| 7.58 7.58 7.58
20 0.01 0.01 0.01] 0.00 0.03 0.03/ 0.07 0.07 0.07| 0.00 0.00 0.00/ 1.06 1.06 1.06
30 0.00 0.00 0.00f 0.L00 0.00 0.00f 001 0.01 0.01] 0.00 0.00 0.00{ 0.05 0.05 0.05
40 0.00 0.00 0.00/{ 0.00 0.00 0.00/ 0.00 0.00 0.00f 0.00 0.00 0.00/ 0.00 0.00 0.00
50 0.00 0.00 0.00/ 0.00 0.00 0.00/ 0.00 0.00 0.00f 0.00 0.00 0.00/ 0.00 0.00 0.00
60 0.00 0.00 0.00f 0.00 0.00 0.00f 0.00 0.00 0.00/ 0.00 0.00 0.00{ 0.00 0.00 0.00
70 0.00 0.00 0.00/{ 0.00 0.00 0.00/ 0.00 0.00 0.00f 0.00 0.00 0.00/ 0.00 0.00 0.00
80 0.00 0.00 0.00f 0.L00 0.00 0.00f 0.00 0.00 0.00/ 0.00 0.00 0.00| 0.00 0.00 0.00
TABLE 7: DICTIONARY ATTACK: Key Retreival Rate (in %) with (0,1,2) bECC
# Unknown Key Size Known Key Size
of Nolights Lights FRGC Nolights Lights FRGC
Peaks 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
05 99.0 99.0 99.0] 81.0 81.0 81.0] 52.8 528 52.8| 99.0 99.3 99.3] 925 925 934[ 941 941 941
10 925 925 925| 354 354 354 492 492 492 925 925 925/ 708 708 71.1] 580 58.0 587
20 685 685 685/ 032 032 032/ 000 0.00 0.00f 722 711 71.8| 20.3 203 20.3| 557 557 557
30 38.0 380 38.0/ 0.00 0.00 0.00f 0.00 0.00 0.00f 45.2 452 452 295 295 295/ 0.33 0.33 0.33
40 10.8 10.8 10.8| 0.00 0.00 0.00{ 0.00 0.00 0.00{ 20.3 20.3 20.7| 0.33 0.33 0.33] 0.00 0.00 0.00
50 160 160 160/ 0.00 0.00 0.00/ 0.00 0.00 0.00/ 689 6.89 7.21] 0.00 0.00 0.00f 0.00 0.00 0.00
60 0.00 0.00 0.00/{ 0.00 0.00 0.00{ 0.00 0.00 0.00/ 1.64 1.64 164/ 0.00 0.00 0.00{ 0.00 0.00 0.00
70 0.00 0.00 0.00f 0.L00 0.00 0.00f 000 0.00 0.00/ 0.33 0.33 0.33] 0.00 0.00 0.00f 000 0.00 o0.00
80 0.00 0.00 0.00f 0.00 0.00 0.00f 000 0.00 0.00f 0.33 0.33 0.33] 0.00 0.00 0.00f 000 0.00 o0.00
TABLE 8: Multi-Class: IRFR (in %) with (0,1,2) bit ECC
# Unknown Key Size Known Key Size
of Lights Nolights Palmprint Lights Nolights Palmprint
Peaks| 0 1 2 0 1 2 0 1 2 [9] 1 2 0 1 2 0 1 2
05 00 00 00|00 00 00|02 o00 00|00 00 00|00 00 00|02 00 00
10 00 00 00|00 00 00|02 00 00|00 0O 00Oj/00 00 00|02 00 o00
20 00 00 00|01 00 00|05 01 01f/00 00 00|01 00 00]04 00 00
30 00 00 00/03 01 0104 00 00|00 00 00|01 00 00|04 00 00
40 00 00 00|05 04 03/08 01 01{00 00 00|01 00 00|07 00 o00
50 01 00 00|14 12 10|07 00 0001 00 0002 01 01|07 00 00
60 02 00 00|24 112 10|29 20 17|01 00 00|02 01 01|10 02 01
70 03 01 01|28 23 20|16 08 06|02 00 00404 01 01|08 01 0.0
80 01 00 00|36 30 26|39 30 25/ 01 00 00|05 02 0211 03 03
TABLE 9: Multi-Modal: IRFR (in %) with (0,1,2) bit ECC
# Unknown Key Size Known Key Size
of Lights Nolights Lights Nolights
Peaks| 0 1 2 0 1 2 0 1 2 0 1 2
05 01 00 0000 00 00|01 00 00|00 00 o0.0
10 04 02 01|04 02 02{02 00 00|02 00 00
20 02 00 00/04 02 01|02 00 00|03 00 00
30 04 00 0013 10 08|/ 04 00 0004 01 01
40 10 05 04|28 22 18/ 05 00 00|06 02 01
50 10 05 04|23 18 15/ 06 00 00|05 01 00
60 20 14 12|37 29 25|06 01 01|07 02 01
70 09 03 03|56 47 40|05 00 00|11 05 04
80 05 00 00|61 51 44|05 00 00|12 06 05

« Spreading keys across multiple people (could be difrom the constituent pattern classes can each retrieveta par
ferent biometric modalities) can be useful for bankingf the bound key which can then be put together to retrieve
or similar applications. This would also be useful irthe whole key, makes the information bound to the template
scenarios where one would like to spread keys ovarore secure and also has lower storage space requirements.

n users but only require ani¢(< n) user biometric ) _
samples to successfully retrieve the whole key. Here we consider the problem of spreading a key over

Spreading keys across multiple biometric modalitiedifferent biometric modalities (classes) while still dgsi
like face, palmprint, iris etc. thus making biometrid"d @ Single template. We design the template by simply

authentication systems more resistant to social attacRSSIgning the same class label while formulating the filter
design with each training image having a shift determined

One can easily spread the key over multiple pattern clasdssthe part of the key that is bound to that training image.
by creating separate templates for each pattern class. How-our experiments we spread the key equally between the
ever designing a single template such that query patteta® modalities (classes), however one can spread the key
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(a) Known Key Size (b) Unknown Key Size (c) Known Key Size (d) Unknown Key Size

Fig. 7: Information retrieval failure rate (in %) for multi-modal comibition of PALMPRINT with (a,b) PIE NOLIGHTS and (c,d) PIE LKT'S.
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(a) Known Key Size (b) Unknown Key Size (c) Known Key Size (d) Unknown Key Size

Fig. 8: Information retrieval failure rate (in %) for multi-class comation (a,b) CMU PIE NOLIGHTS and (c,d) POLYU PALMPRINT

unevenly between the two as well. comparison with the single biometric scenario for the same
For the multi-modal experiments we use faces arey length. The IRFR performance depends on the amount
palmprints as the two biometric modalities over which wef noise in the correlation plane which in turn depends
spread the keys. We generate random pairings of faagasthe number of peaks in the correlation plane. Since the
and palmprints for our experiments since to the best atimber of peaks per image are fewer the IRFR performance
our knowledge there is no publicly available multi-modalmproves for these scenarios. So, in theory spreading the
database of faces and palmprints. Further since therekéy over a greater number of pattern classes will improve
no intrinsic relation in the images between faces arte key retrieval rates for the same key size. However, more
palmprints except that both belong to the same person, itcisnstraints in the filter optimization problem reduces the
reasonable to create random pairs of faces from CMU-Pfilier solution space resulting in a worse objective value.
and palmprints from the PolyU database. For the multi-claBsom these results we conclude that the bottleneck to
experiments we randomly pair users within each databasieding longer keys to the template is the ability to detect
considered, while ensuring that the pairings are unique. the peaks in correlation output as opposed to the number
We report the average results of each experiment caof- constraints. This trade-off that exists between the two
ducted 10 times with a random key bound to the templatearrants a more careful study and is a topic for future
and random pairing for the multi-modal and multi-classesearch. The FCIRR for the mutli-modal and multi-class
experiments for each run. We apply the filter individuallgettings is observed to be zero when using the secondary
to the two biometric signatures, extract the keys froimput and follows trends similar to Table 4 and Table 6
each correlation output and combine the two to extract thehen the secondary password is not used i.e., the images
complete key. Since an error in the extracted key can be due not convolved with the random mask.
to either a single biometric signature or both, the accuracy o
of the key would depend on the specific combination of the2 Limitations
biometric signatures among the test images, so we consid&e main limitation of the proposed scheme is its limited
all possible pairs to report our results. robustness to large appearance variations as is evident
Fig. 7 shows the plots of IRFR for the multi-modalfrom the FRGC results. We believe that using CFs with
experiments when the key size is known and unknowmore distortion tolerance can help improve the algorithm’s
Similarly, Fig. 8 shows plots of IRFR for the multi-classtolerance to larger image variations. In addition, as is
experiments when the key size is known and unknown. Tleeident from section 6.3.4, the proposed technique has
key-retrieval rates fluctuate a lot unlike the experiments limited robustness against dictionary attacks, at least fo
Section 6 due to the sensitivity of the algorithm to the clashort keys, when not using a password to convolve the
pairs i.e., some image pairs are easier than other pairs fi@ining images with a random mask. Designing classifiers
key retrieval. This seems to suggest that given a choiadich are tolerant to dictionary attacks can help increase
for forming class pairs, one has to choose the pairs mabustness to such attacks and is a topic for future research
carefully to optimize for IRFR. Table 9 and Table 8 list the
performance for a select number of peaks with known arti CONCLUSIONS
unknown key size for different multi-modal and multi-clas§Ve discussed a framework to bind information to image
database combinations respectively. Observe that thesRRfatterns and to retrieve this information during authentic
for the multi-class and multi-modal case are much lower tion by embedding the information in the template designed
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to discriminate that pattern class from the other pattefzo]
classes. We showed that we can robustly retrieve keys up
to 250 bits with a information retrieval failure rate (IRFR}),;;
under 6% and nearly-zero false class information retrieval
rate (FCIRR). We further showed how the same framewot'/g2
can be used to spread keys over multiple users and o erl
multiple biometric modalities and retrieve keys up to 800

bits long with a IRFR of under 4% and nearly-zero FCIRR’[.23]
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