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Abstract

Biometrics systems typically work best in settings where
probe samples are captured in the same manner as the train-
ing set. When biometrics are acquired under different con-
ditions or with different sensors, naı̈ve approaches to recog-
nition perform poorly. Coupled mappings have been intro-
duced for performing face recognition across different reso-
lutions, and learn a common subspace between different do-
mains. In this paper, we introduce Maximum-Margin Cou-
pled Mappings (MMCM), which aims to learn projections
such that there is a margin of separation between pairs of
cross-domain data from the same class and pairs of cross-
domain data from different classes. While coupled mapping
techniques have traditionally been used for matching face
images at different resolutions, we demonstrate that MMCM
is effective for cross-sensor biometric matching as well.

1. Introduction
A large focus of machine learning research is to per-

form matching between a probe sample and a gallery set
of data for tasks such as information retrieval and recogni-
tion. Oftentimes the probe will lie in the same domain as
the gallery set, but this is not always the case. This is often
the case in many biometrics applications. For example, in
some face recognition applications, the gallery images are
of high resolution whereas the probe images may be cap-
tured at a lower resolution. When the probe is not of the
same domain as the gallery, traditional classification meth-
ods trained on the gallery will not characterize the query
in a way that allows for a useful comparison to the gallery
set. In cases where the query has a different feature rep-
resentation, it may be impossible to use methods otherwise
available for tasks in a single domain.

The approaches for handling data from disparate do-
mains can depend on the particular task or goal trying to be
achieved. Domain adaptation and transfer learning refer to
methods that attempt to learn a mapping from one domain
to the other. In contrast, coupled mappings focus on learn-

ing a subspace that is common to both domains. Addition-
ally, this subspace can be low-dimensional, in which case
coupled mapping formulations also perform dimensional-
ity reduction with the assumption that the underlying data
lies in a low-dimensional subspace that both domains can
be mapped to.

This work introduces Maximum-Margin Coupled Map-
pings (MMCM), a new coupled mapping formulation in-
spired by large margin methods used in a single domain.
The paper is structured as follows: Section 2 discusses sim-
ilar work, particularly those related to coupled mappings.
Section 3 provides the problem statement and how MMCM
is designed to solve it. Section 4 shows empirical results on
two biometrics tasks: low-resolution face recognition and
cross-sensor ocular recognition. Section 5 concludes the
paper.

2. Related Work
Domain adaptation and transfer learning methods have

been used in a range of applications. It has grown in pop-
ularity in natural language processing [6], and has recently
gained interest in computer vision tasks such as object de-
tection and recognition [15, 17]. Pan & Yang provide a
more thorough overview of the broader field [18].

There has also been work addressing cross-domain chal-
lenges in biometric applications. Early work by Hennings-
Yeomans et al. performed super-resolution of faces for both
reconstruction and recognition simultaneously [10]. Klare
and Jain introduced a framework for heterogeneous face
recognition using prototypes in multiple imaging modali-
ties to compare different image representations [14]. Zuo
et al. perform cross-spectral iris recognition by learning a
predictive mapping function from the visible light spectrum
to the near infrared channel [25].

Of particular interest to our work are other proposed
methods of coupled mappings. As mentioned previously,
coupled mappings aim to learn projections to a single sub-
space. Canonical Correlation Analysis (CCA) is a long-
standing method that learns projections which maximize the
correlation between two sets of data [11]. More recently,



Li et al. introduced two methods, one referred to as Cou-
pled Mappings, and a more effective method called Cou-
pled Locality Preserving Mappings (CLPM), which consid-
ered the local neighborhoods of data samples when learning
projections [16]. Zhou et al. incorporated class labels into
a coupled mapping objective function called Simultaneous
Discriminant Analysis (SDA), and demonstrated a large im-
provement over CLPM [24]. Biswas et al. introduced a
method based on multidimensional scaling that learns pro-
jections to a space such that distances between high and
low-resolution face images approximate the distance be-
tween two corresponding high resolution images [2]. Fi-
nally, Kan et al. introduced Multi-view Discriminant Anal-
ysis (MvDA), a method to simultaneously learn sets of pro-
jections from any number of domains to a single common
subspace [13].

With the exception of CCA, all the coupled mapping
methods listed were introduced for face recognition. Much
of the focus of coupled mapping is to leverage the informa-
tion available in high-resolution face images to help recog-
nize low-resolution face images. While this has tradition-
ally been the goal of the previous coupled mapping meth-
ods, we intend to show the utility of these approaches in
problems beyond face recognition.

Some coupled mapping techniques can be seen as ex-
tensions of single domain methods; for instance, the ob-
jective function of SDA is very similar to Linear Discrim-
inant Analysis (LDA) [1]. Similarly, our work is inspired
by Large Margin Nearest Neighbor (LMNN) classification
[23]. The work learns a Mahalanobis distance such that
same class pairs have a small distance while ensuring a mar-
gin between pairs of data from different classes. In Section
3, we discuss the relation of our work to LMNN.

3. Maximum-Margin Coupled Mappings

3.1. Problem Statement

In many scenarios, we have data samples from two dif-
ferent domains, DA ∈ Rα and DB ∈ Rβ , which share a
common set of labels L = {l1, l2, ..., lc}. If we are given
A = {a1, a2, ..., am} ∈ DA and B = {b1, b2, ..., bn} ∈
DB , we want to be able to match samples from one domain
to samples from the other. Defining a distance metric can
be done simply enough when comparing data samples from
the same domain, but it is often difficult to compare data
across domains with different representations. To facilitate
this, we can map data from both DA and DB into a com-
mon space, which we will denote DZ ∈ Rγ . The goal is to
then find functions fA : DA → DZ and fB : DB → DZ .
This paper introduces a method of learning linear projec-
tions, and therefore fa : PTAai → âi and fb : PTBbi → b̂i.
PA ∈ Rα×γ projects the α-dimensional data sample ai into
a γ-dimensional subspace. Similarly, PB ∈ Rβ×γ projects

the β-dimensional data sample bi into a γ-dimensional sub-
space. It is not necessary that α = β nor that α 6= β. Once
A and B are projected to Â = {â1, â2, ..., âm} ∈ DZ
and B̂ = {b̂1, b̂2, ..., b̂m} ∈ DZ , data samples between
the two sets can be naturally compared. Any range of
classifiers can be trained using both sets of data, or sim-
ple metrics such as Euclidean distance can be used to find
the similarity between samples from the different domains.
When given class labels YA = {ya1, ya2, ..., yam} ∈ L and
YB = {yb1, yb2, ..., ybn} ∈ L, we want to find projections
such that in general dyai=ybj (âi, b̂j) < dyai 6=ybk(âi, b̂k),
where d(·, ·) is some distance metric. In other words, given
a data sample fromDA and data samples fromDB , we want
the sample fromDA to be closer to those data samples from
DB that share the same class label.

3.2. MMCM Formulation

Canonical Correlation Analysis (CCA) is one of the old-
est and most popular methods proposed to capture the corre-
lations between data from different domains. However, be-
cause CCA is an unsupervised method, it cannot take advan-
tage of class label information that might be available while
training. Supervised coupled mapping methods like SDA
[24], CMFA [20], and the proposed MMCM algorithm on
the other hand can take advantage of the available class label
information. SDA and CMFA are linear projection learn-
ing methods which try to minimize the distance between
data samples with the same label and maximize the aver-
age distance between data samples with different labels, but
are not designed to guarantee an explicit margin of separa-
tion between a match pair and an impostor pair. Inspired by
the success of large margin based distance learning methods
[19, 23], we propose to learn coupled mapping projections
in a margin based formulation.

MMCM aims to find linear projections with the largest
margin between match pairs across domains and non-match
pairs across those domains. While other formulations for
coupled mapping have drawn inspiration from traditional
linear projection techniques such as Principal Component
Analysis [22], MMCM draws upon support vector ma-
chines (SVMs) and other margin maximizing methods for
its formulation. In learning projection matrices PA and PB ,
we aim to solve the following minimization problem:

min
PA,PB

λ

∑
M d(ai, bj)

|M |

+ (1− λ)

∑
V [1 + d(ai, bj)− d(ai, bk)]+

|V |

(1)

where M = {(i, j)|yai = ybj} and V = {(i, j, k)|yai =
ybj , yai 6= ybk} and [x]+ represents the hinge loss, defined
as max(0, x). While any distance function can be used, we
choose to use the squared Euclidean distance to compare



data samples, so we define

d(ai, bj) = ‖PTAai −PTBbj‖22.

We can see in Eq. 1 that there are two terms: the first is
a pull term that aims to project data samples from different
domains close together when they share the same class la-
bel, and the second term is a push term that aims to keep
projected data from different domains far apart when they
do not share a class label. The second term is defined by
both cross-domain match pairs and cross-domain impostor
pairs. It penalizes cross-domain impostor pairs which lie
closer to ai than cross-domain matches by some margin.
This margin is set to 1; it is well known in support vector
machine (SVM) formulation that there is no loss of gener-
ality in setting the margin to 1. The push term uses a hinge
loss; tuples in the set V that do not enter or cross that margin
do not impact the computed objective value. λ is a parame-
ter in the range (0, 1) to determine the tradeoff between the
two parts of the objective, and must be either set by a user
or learned on a validation set.

3.3. Optimizing MMCM

It is important to first note that the objective function
is not convex. Since solving the optimization problem can
only guarantee finding a local minimum, it is important to
initialize PA and PB with good estimates. This can include
CCA or any other coupled mapping projections.

We choose to solve the optimization problem using
gradient descent. Algorithm 1 gives an overview of the
MMCM method. Keeping in mind that we use Euclidean
distance in our optimization, the partial derivatives of the
objective function J with respect to PA and PB are

∇PA
J = 2λ

∑
M

(PTAai −PTBbj)a
T
i

+ 2(1− λ)
∑
V+

PTB(bk − bj)aTi

∇PB
J = 2λ

∑
M

(PTBbj −PTAai)b
T
j

+ 2(1− λ)
∑
V+

PB(bjb
T
j − bkbTk )

+ PTAai(b
T
k − bTj )

where V+ represents the subset of V that has a non-zero
hinge loss, based on PA,t and PB,t, which are the learned
projections at the tth iteration. We update PA and PB as
follows,

PA,t+1 = PA,t − ηt∇PA
Jt

PB,t+1 = PB,t − ηt∇PB
Jt

Algorithm 1 Maximum-Margin Coupled Mapping
Require: A and B - data with labels YA and YB , and λ -

trade-off parameter
Initialization: Need estimates of PA and PB .
η0 = 1
while (not converged) do
V+ = {(i, j, k) ∈ V, d(ai, bk)− d(ai, bj) < 1}
while Jt+1 > Jt do
PA,t+1 = PA,t − ηt∇PA

Jt
PB,t+1 = PB,t − ηt∇PB

Jt
if Jt+1 > Jt then
ηt = .9ηt

end if
end while
ηt+1 = 1.1ηt
t = t+ 1

end while

where η is the learning rate. We control the learning rate
according to whether each update to PA and PB lowers the
objective value; if the value is lowered, then ηt+1 = 1.1ηt,
otherwise, we set ηt = .9ηt and try updating PA,t+1 and
PB,t+1 again. The gradient descent algorithm can continue
indefinitely as η → 0, so we halt the optimization after
some number of iterations, or when η < ε. Empirically,
we found ε = 10−6 to be sufficient in our tests, with further
iterations of the gradient descent algorithm having a very
small impact on the projections in PA and PB .

4. Experiments
In this section, we compare MMCM to other single-

domain and cross-domain methods on two different tasks:
cross-resolution face recognition and cross-sensor ocular
recognition. We compare to LMNN using an implementa-
tion provided by the authors [23]. The other single-domain
method used is LDA, a popular method for face recognition
[1]. We compare to three cross-domain methods, CCA (im-
plemented by Sun et al. [21]) and our own implementations
of SDA [24] and CMFA [20]. Because the MMCM formu-
lation is a non-convex optimization problem, it requires an
initial estimate of the projections. In this work we initialize
with projections learned by CCA, SDA, and CMFA. When
MMCMCCA, MMCMSDA, or MMCMCMFA is written, it in-
dicates that MMCM was initialized with projections learned
with CCA, SDA, and CMFA, respectively.

4.1. Face Recognition

Low-resolution (LR) face recognition is an emerging re-
search topic in biometrics. Methods for low-resolution face
images have applications in long-distance recognition sys-
tems and systems that use low quality sensors, e.g. surveil-
lance cameras. Methods that are successful in “ideal” face



Figure 1. Example of the wide variation in appearance of subjects
in the Multi-PIE set used in Section 4.1 High resolution (HR) im-
ages are in the top row, with corresponding low resolution (LR)
images in the bottom row.

recognition conditions fail at lower resolutions, due to the
difficulty in getting texture information or accurate facial
landmarks from such low-quality images. As an alterna-
tive to these standard approaches, many methods approach
the problem by learning projections to a common subspace
[2, 13, 20]. The assumption made in this approach is that
when a LR query image is captured, the gallery will con-
tain HR images. Under these conditions, the image can
be matched by projecting the LR query image and the HR
gallery to the same subspace.

4.1.1 Multi-PIE

We demonstrate the usefulness of MMCM for cross-
resolution face recognition on the Multi-PIE (Pose, Illu-
mination, and Expression) database [8]. The Multi-PIE
database contains over 750,000 images of a total of 337 sub-
jects, with a wide variety of appearance available for each
subject. We use a subset of 158 subjects for which human-
labeled eye centers used for image registration are available.
The human-labelled landmarks allow faces to be cropped so
images contain only the face, and allows the eyes to be in
a fixed location. We also restrict the images to come from
a single acquisition session. We use images from 3 poses
(yaw = −15◦, 0◦, and 15◦) and include 2 expressions, neu-
tral and smiling. Images are captured with illuminations
from 20 different directions, for a total of 120 images per
subject, and a total of 18,960 images.

The training protocol in this work is to select a random
subset of 4 images from each subject to use as training. HR
images are resized to be 24 × 24.1 LR images are gener-

1This is mainly for two reasons. First, Hennings-Yeomans et al. ob-
served that rank-1 identification rates did not improve significantly for the
Multi-PIE dataset when using images larger than 24 × 24 [10]. Second,
this size keeps the computational complexity manageable while allowing
for an investigation of various coupled mapping methods.

ated by blurring and downsampling HR images to 12× 12.
Each method learns 143 projections using the 24× 24 (HR)
and 12 × 12 (LR) versions of the training images as cross-
domain pairs. After projections are learned on the training
set, the HR training set becomes a gallery for the LR query
images, which are LR images created with the remaining
116 images (not used at all during the training) per subject.
At test time, the nearest neighbor using L2 distance is found
for each query image. The figure of merit used is the rank
1 identification rate, which is the percentage of query im-
ages that have a nearest neighbor with the same identity as
the query image. Results are reported as the average of 10
trials, each using a random subset of the data as the training
data and gallery.

Table 1 shows the rank 1 identification rates and Figure
2 shows the cumulative match characteristic curves (CMC),
which represent how many probe images return a match
within the first n matches. The 10 trials comprise over
180,000 tests of a single probe image, so the rank 1 iden-
tification rates have a standard deviation of approximately
0.11%.

The single-domain methods, LDA and LMNN, learn
projections on LR images, and subsequently match the LR
probe set to the LR gallery. While they perform better than
the unsupervised CCA, they do not do as well as the su-
pervised coupled mapping approaches. By leveraging class
labels when learning projections, SDA and CMFA can more
effectively learn the relation between images of different
resolutions. SDA also outperforms LMNN and LDA, which
cannot utilize the information available at the higher reso-
lution.

MMCM is able to outperform all tested coupled map-
ping methods, with a rank 1 identification rate of over
80%. Unlike SDA and CMFA, which achieve similar re-
sults, MMCM aims to learn projections so that images from
different classes are separated by a large margin, whereas
SDA and CMFA optimize projections based on the average
distance between pairs of data points.

The results also show that MMCM can improve on any
of the tested coupled mapping methods for the applica-
tion. The performance gain is most dramatic when ap-
plied to CCA - almost a 10% increase in the rank 1 iden-
tification rate. The performance gain is less pronounced
when starting with SDA and CMFA, but this could be be-
cause these methods are already getting most of the valu-
able discriminative information from the data. The im-
provement for MMCM with any initialization is very large
relative to the standard deviations of the rank 1 identifica-
tion rates (∼ .11%), so we can see that the improvement
from MMCM is statistically significant with any initializa-
tion method.



Table 1. Rank 1 identification rates on Multi-PIE face recognition
task. Results are the averages of 10 trials. ∆ indicates the im-
provement using MMCM versus the initial estimated projections.

Method Rank-1 ID (%) ∆
LMNN 70.49 –
LDA 71.33 –
CCA 63.67 –

MMCMCCA 73.23 +9.56
SDA 76.41 –

MMCMSDA 79.94 +3.53
CMFA 76.93 –

MMCMCMFA 80.05 +3.12
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Figure 2. Cumulative match curves for Multi-PIE face recognition

4.1.2 SCface

One of the drawbacks of Multi-PIE is that there are no true
LR images; the LR images are simply generated from a
higher resolution. The SCface database [7] contains surveil-
lance camera images of 130 subjects at different distances
from the sensor, resulting in images of different resolutions.
We use a subset of SCface consisting of 10 images per sub-
ject: 5 different visible light sensors capturing the subject at
the second closest distance (HR), and the same sensors cap-
turing the subject at the closest distance( LR). After crop-
ping and aligning the images, the HR images are down-
sampled to 30 × 24, and the LR images are downsampled
15 × 12. Downsampling the images reduces overfitting of
the projections due to the lack of training data, and a simi-
lar resolution to Multi-PIE allows for comparison of the two
datasets. Figure 3 shows the 10 images for a single subject,
and also illustrates the small differences in pose and appear-
ance across the different sensors. Out-of-plane rotation of
the face is also present, making face alignment less exact.
All of these factors make the dataset very challenging.

We follow the same procedure as the Multi-PIE experi-

Figure 3. Images from SCface from a single subject. Each column
is a different camera sensor. HR images are in top row and LR
images are in the bottom row.

Table 2. Rank 1 identification rates on SCface face recognition
task. Results are the averages of 10 trials. ∆ indicates the im-
provement using MMCM versus the initial estimated projections.

Method Rank-1 ID (%) ∆
LMNN 31.62 –
LDA 22.85 –
CCA 19.77 –

MMCMCCA 29.77 +10.00
SDA 35.08 –

MMCMSDA 39.92 +4.84
CMFA 33.77 –

MMCMCMFA 37.77 +4.00

ments. 4 sensors are chosen for each subject to be the train-
ing set, and the HR images become the gallery for matching
the 130 probe images, which are comprised of the remain-
ing sensor per subject. Results shown are with 129 pro-
jections. We chose parameters for both MMCM and the
baselines that were learned on the Multi-PIE dataset.

Overall, the rank 1 rates are much lower compared to
the Multi-PIE experiment due to the challenges posed in
the SCface database. Still, there are similar trends as the
Multi-PIE task, and MMCM outperforms the other coupled
mapping baselines and the single-domain methods. Over 10
trials, there are 1,300 probe images tested, so the standard
deviation of the rank 1 rates is approximately 1.39%, and
the improvement seen with MMCM is once again statisti-
cally significant.

4.2. Ocular Recognition

Iris recognition is an increasingly popular technique for
security applications. Iris cameras typically capture an in-
frared image of the eye and the surrounding region. Af-
ter the image is captured, the iris is segmented and recog-
nition can be performed [5]. While the accuracy of such
methods can be very high, it has been shown that using
the region surrounding the iris can produce higher recog-
nition rates in challenging conditions [3]. Additionally, tra-
ditional iris recognition methods require high resolution im-



Figure 4. Example ocular images used for matching, after images
are aligned according to eye corners. The top row shows images
from the LG 4000 sensor, while the bottom row shows images
from the CFAIRS sensor. The left 2 columns are authentic pairs of
images from a single subject, and the right 2 columns are authentic
pairs from a second subject.

ages [9]. The ocular region consists of the region surround-
ing the eye that is captured by an iris camera and captures
approximately 15% of the face. We use ocular data from
two sensors, the LG IrisAccess 4000 (LG 4000) [12] and
the Honeywell Combined Face and Iris Recognition System
(CFAIRS) [4], collected by the University of Notre Dame
for the Biometrics Exploitation Science and Technology
(BEST) Development Challenge Problem (BDCP). Sample
images from each sensor can be seen in Figure 4. Both
sensors collect images in the infrared spectrum, but there is
a clear distinction in the appearance between images from
each sensor. Additionally, images from the CFAIRS cam-
era can be captured at a longer distance than the LG 4000.
Images included in the test are not necessarily captured in
a single session. The images are aligned according to the
eye corners. Some images from the LG 4000 require some
image padding after eye corner alignment, due to the tight
field of view captured with the sensor. While the results
shown will be including the padded images, tests using a
smaller ocular region (and minimal image padding) showed
slightly lower performance for all methods. There are a total
of 2577 images from the CFAIRS sensor and 1559 images
from the LG 4000.

The testing procedure is similar to that in Section 4.1.
The dataset consists of 164 different ocular regions, and
two LG 4000 images and two CFAIRS images are selected
for each region to learn projections and also serve as the
gallery sets. The other images become two different probe
sets, one comprised of the remaining LG 4000 images, and
one comprised of the remaining CFAIRS images. Once the
projections are learned, two tests are performed: one match-
ing the CFAIRS probe set to the LG 4000 gallery images,
and one matching the LG 4000 probe set to the CFAIRS
gallery images. As in the face recognition tests, this pro-
cedure is repeated 10 times with randomly selected gallery
sets. Unlike face recognition across different resolutions,
this cross-sensor matching includes two domains with the

Table 3. Rank 1 identification rates (in %) on ocular recognition
task. The sensor name indicates the sensor of the probe set images.

Method 9× 12 18× 24
LG 4000 CFAIRS LG 4000 CFAIRS

LDA 42.32 37.76 63.76 60.05
LMNN 54.53 54.23 57.77 57.41
CCA 75.91 49.42 80.80 75.60

MMCMCCA 77.84 71.70 81.64 81.84
SDA 77.29 73.70 83.20 80.12

MMCMSDA 82.72 81.42 84.76 82.35
CMFA 76.45 73.77 83.48 80.63

MMCMCMFA 79.41 80.44 85.05 82.92

same dimensionality. This allows for training of single do-
main methods such as LMNN and LDA by simply pooling
the LG 4000 and CFAIRS training images together for a to-
tal of 4 training images per ocular region. The matching
protocol does not change; the only images included in the
gallery are those not belonging to the sensor that produced
the probe set.

We compare MMCM’s performance on cross-sensor oc-
ular recognition at two different resolutions: learning 107
projections at 9 × 12 resolution, and learning 163 projec-
tions at 18 × 24 resolution. The rank 1 identification rates
for all tests are shown in Table 3, and CMCs for the 9× 12
resolution are shown in Figure 5. The standard deviations
of the rank 1 identification rates are approximately 0.45%
and 0.33% for the LG 4000 and CFAIRS probe sets, re-
spectively. The trends for the ocular cross-sensor tests are
similar to those seen in the cross-resolution face matching.
Again the coupled mappings outperform the single-domain
methods, and the supervised coupled mappings outperform
CCA. MMCM once again achieves statistically significant
improvements (>3 standard deviations) over its initializa-
tions. Also, not surprisingly, the 18 × 24 probe images
yield higher recognition rates than 9 × 12 probe images.

4.3. Discussion

MMCM is a non-convex formulation for learning cou-
pled mapping projections. In the two different tasks, we see
that MMCM initialized with either CCA, SDA, or CMFA is
able to find more discriminative projections. This is evident
from the improved performance in those tasks. It is also
important to note that MMCM will produce different pro-
jections depending on the initialization. The performance
gains for each initialization is therefore derived from apply-
ing the large margin method in the local parameter space.

Another factor affecting the performance is the λ param-
eter weighing the pull and the push terms. As Figure 6
shows, the performance is not very sensitive to a particu-
lar value of λ, but instead degrades slowly from an optimal
point. The consistent performance across the range of λ also
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Figure 5. Cumulative match curves for ocular recognition

demonstrates that both the push and pull terms of the opti-
mization can contribute to the improved accuracy gained
with MMCM.

5. Conclusions

This work has two primary contributions. First, it in-
troduces a new method of learning coupled mappings for
cross-domain matching, which aims to maximize the mar-
gin between match pairs and impostor pairs. Second, it
demonstrates that coupled mappings can be used on tasks
beyond low resolution face recognition, typically the focus
of such methods. The effectiveness of MMCM is demon-
strated on two different tasks and shows that it can learn
more discriminative projections compared to other coupled
mapping projection learning algorithms.
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Figure 6. Performance on face and ocular recognition with varying
λ. The solid line represents accuracy obtained with MMCM, while
the dashed line represents the accuracy of the projections (learned
via SDA) used to initialize MMCM. Ocular results are at 9 × 12
resolution.
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