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Abstract

We consider the problem of matching highly non-ideal

ocular images where the iris information cannot be reli-

ably used. Such images are characterized by non-uniform

illumination, motion and de-focus blur, off-axis gaze, and

non-linear deformations. To handle these variations, a sin-

gle feature extraction and matching scheme is not suffi-

cient. Therefore, we propose an information fusion frame-

work where three distinct feature extraction and matching

schemes are utilized in order to handle the significant vari-

ability in the input ocular images. The Gradient Orientation

Histogram (GOH) scheme extracts the global information

in the image; the modified Scale Invariant Feature Trans-

form (SIFT) extracts local edge anomalies in the image; and

a Probabilistic Deformation Model (PDM) handles non-

linear deformations observed in image pairs. The simple

sum rule is used to combine the match scores generated by

the three schemes. Experiments on the extremely challeng-

ing Face and Ocular Challenge Series (FOCS) database

and a subset of the Face Recognition Grand Challenge

(FRGC) database confirm the efficacy of the proposed ap-

proach to perform ocular recognition.

1. Introduction

The use of the ocular region as a biometric trait has

gained considerable traction in recent years. Besides the

eye and the structures within the eye (viz., iris, retina, and

sclera), the ocular region includes the eyelids, eyelashes,

eyebrow and the skin texture in the vicinity of the eye. Tra-

ditionally, research in ocular biometrics has focused on seg-

menting and processing the iris texture primarily due to its
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high matching accuracy [6]. However, this accuracy is pred-

icated on the quality of the input ocular image and its spa-

tial resolution. When the quality of the input image deteri-

orates or when the stand-off distance between the eye and

the camera increases, the matching accuracy due to the iris

biometric can significantly degrade. This has led to an in-

creased interest in utilizing the region surrounding the iris

for enhancing the accuracy of the biometric system.

In this context, the use of the periocular region as a bio-

metric cue has been investigated. Periocular biometric, as

defined in [20], specifically refers to the externally visible

skin region of the face that surrounds the eye socket. The

utility of this trait is especially pronounced when the iris is

occluded (e.g., due to eyelid closure) or when the iris can-

not be accurately segmented (e.g., due to low image qual-

ity). While earlier work on periocular biometrics focused on

images acquired in the visible spectrum [14, 11, 13], more

recent work has explored the processing of images in the

near-infrared spectrum [20]. From a practical application

standpoint, the impact of acquisition distance on periocular

matching performance has been studied [2].

In this work, we seek to answer the following question:

Is it possible to perform biometric recognition using highly

non-ideal ocular data? This type of data is commonly en-

countered in unconstrained environments (e.g., iris-on-the-

move type of systems) where ocular images exhibit non-

uniform illumination, severe blur, occlusion, oblique gaze,

etc. Further, the dimensions of the eye region can signifi-

cantly vary across images. See Figure 1. In other words,

the intra-class variations observed in such images can be

significantly large. Our goal is to design effective mech-

anisms for performing feature extraction and matching on

this data. In particular, we hypothesize that an information

fusion approach is necessary to process this data.

To this end, we present a biometric fusion framework

for processing and matching ocular images acquired under

highly non-ideal conditions. The main contributions of this

work are as follows:

1. We highlight the various types of challenges asso-

ciated with ocular recognition when using images that are

acquired from moving subjects in an unconstrained envi-
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Figure 1. Non-ideal ocular images demonstrating some of the challenges addressed in this work.

ronment.

2. We describe an information fusion approach to im-

prove the performance of ocular recognition in this very

challenging imagery.

3. We demonstrate the advantage of using the entire oc-

ular region, rather than the iris information alone, in cases

where the iris may be occluded or when the quality of the

acquired images is very low.

2. Challenging Ocular Images: An Overview

The ocular image subset from the Face and Ocular Chal-

lenge Series (FOCS) database [12] was used in this work.

The FOCS database was collected primarily to study the

possibility of performing ocular (iris and periocular) recog-

nition in images obtained under severely non-ideal condi-

tions. Ocular images of dimension 750 × 600 pixels were

captured from subjects walking through a portal, to which a

set of Near Infra Red (NIR) sensors and illuminators were

affixed. Since no constraints were imposed on the walking

subjects, a large number of the acquired images are of very

poor quality. The images from the FOCS ocular subset are

known to be extremely challenging for the task of biometric

recognition, mainly due to the following reasons:

1. High levels of illumination variation: The level of

illumination observed across a set of images varies signif-

icantly in this database. This is caused by the variation in

the stand-off distance, which is in turn caused by subject

motion. Figure 1 (a) and (b) show two images of a single

subject exhibiting high levels of illumination variation.

2. Deformation around the eye region: Many images

in the FOCS database exhibit non-rigid, inconsistent defor-

mations of the eyebrows, eyelids, and the skin region. These

deformations could be caused by involuntary blinking or

closing action of the eye. In such images, the iris is partially

or completely occluded, proving to be a major challenge in

performing both periocular and iris recognition. Figure 1

(c) and (d) show a pair of images corresponding to a single

subject exhibiting such deformation.

3. Padding of the images: Due to the unconstrained im-

age acquisition setup, the size of many periocular images

were smaller than 750 × 600 pixels. Such images were

padded with pixels of zero intensity (by the distributors of

the database) in order to maintain a constant image size, as

seen in Figure 1 (e) and (f).

4. Extremely poor quality images: The quality of some

of the images in the FOCS database is extremely poor due

to blur, occlusions, and gaze deviation as seen in Figure 2

(g), (h), and (i), respectively. Additionally, in some images,

it is difficult even for a human expert to determine the lo-

cation of the physical features (eye, eyebrow, etc.). Some

examples are shown in Figure 1 (j), (k) and (l).

5. Intra-class variability and inter-class similar-

ity: The images in this database were observed to exhibit

high intra-class variability and inter-class similarity, again

caused by the motion of the subjects and significant varia-

tion in illumination. Example images are shown in Figure 2.

(a) (b) (c) (d)

Figure 2. (a) and (b): Image pair corresponding to a single subject,

exhibiting intra-class variability. (c) and (d): Images correspond-

ing to two different subjects exhibiting inter-class similarity.

3. Motivation and Proposed Approach

The iris biometric is not expected to provide good recog-

nition performance on images in the FOCS database (this is

later demonstrated in Section 5), mainly due to two reasons:

(a) difficulty in segmenting the iris, and (b) lack of suffi-

cient information in the iris region, even if it is segmented

successfully. Therefore, using the entire ocular region ap-



pears to be the best alternative for biometric recognition on

this imagery. However, even though the challenges listed in

Section 2 render the task of performing ocular recognition

quite challenging and unique.

Many feature extraction techniques have been proposed

in the existing literature to perform periocular recognition.

Depending on the region of interest from which the features

are extracted, a majority of the existing periocular tech-

niques can be classified into two categories: global (e.g.,

GOH [14], GIST [2], etc.) or local (e.g., SIFT [14, 15];

also see [11]). While global feature extractors summarize

features from the entire image (e.g., shape, color, texture,

etc.), local feature extractors gather information around a

set of detected key points. Existing studies report reason-

ably good periocular recognition performance when using

just one type of feature extraction scheme. Such perfor-

mances can be mainly attributed to the high quality of the

input images. Intuitively, such an approach may not be suit-

able for the FOCS database, owing to the differing qual-

ity of images across the database. Furthermore, a robust

scheme is required to handle the non-rigid deformations oc-

curring in the periocular region. To this end, the current

work adopts an information fusion technique to improve oc-

ular recognition performance. The major aspects of the pro-

posed technique are: (i) to summarize the discriminant in-

formation from the entire image, a global feature extraction

and matching scheme is implemented using Gradient Orien-

tation Histograms (GOH) [5], (ii) to handle scale and shift

irregularities, local information is obtained using a modi-

fied version of the Scale Invariant Feature Transformation

(SIFT) [8], and (iii) to handle the non-rigid and inconsistent

deformations of the eyebrows and eyelids within the perioc-

ular region, Probabilistic Deformation Models (PDM) [17]

are used. This method determines the similarity between

corresponding sub-patches of two images, rather than uti-

lizing the global or local features.

The discriminant information extracted using the above

three techniques could be agglomerated at various levels

(e.g., feature level, score level, etc.). For brevity purposes,

and to avoid training, the proposed approach fuses the bio-

metric information at the score level using a simple sum

rule.

Figure 3. The three methods used for processing non-ideal ocular

images.

4. Feature Extraction

The pre-processing and implementation details for each

of the feature extraction schemes used in this approach are

discussed in this section.

4.1. Gradient Orientation Histograms (GOH)

Given an ocular image, the Gradient Orientation His-

tograms approach is used to extract global information from

a defined region of interest. Defining a region of interest

helps in (a) maintaining uniformity when matching corre-

sponding regions of two separate images, and (b) generating

feature vectors of fixed sizes, which facilitates a quick com-

parison between two given images. To alleviate the prob-

lem of drastic variations in the lighting and to increase its

contrast, illumination normalization was performed prior to

extracting the features.

An eye center detector [19] was used to facilitate geo-

metric normalization of a given image and to determine a

fixed region of interest for feature extraction. The output

of this process is the 2D location of the center of the iris

in a given image. The eye center detector is based on the

shift-invariance property of the correlation filters. The cor-

relation filter for the eye center detector was trained on a

set of 1000 images of the FOCS database, in which the eye

centers were manually labeled. When the correlation fil-

ter is applied to an input image, a relatively sharp peak is

observed in the correlation output, whose location corre-

sponds to the center of the eye. The detection accuracy of

the eye detector was observed to be 95%. The output of

the detector was used as an anchor point to crop a region

of size 500 × 400 pixels. Feature extraction is then per-

formed at specific points, that are sampled at an interval

of 5 pixels in the x- and y-directions over the image. The

gradient orientation information of the pixels lying within

a specified region around a sampling point is then accumu-

lated into an eight bin histogram. The gradient information

at a pixel (x, y), for an image I , is computed using the ex-

pression arctan

(

I(x,y+1)−I(x,y−1)
I(x+1,y)−I(x−1,y)

)

. The histograms cor-

responding to all the sampling points are then concatenated

to form the feature vector of size (1 × 64, 000). Finally,

matching between two images is performed by considering

the Euclidean distance between their corresponding feature

vectors.

4.2. Modified Scale Invariant Feature Transform

For applications with relaxed imaging constraint scenar-

ios, rotation of the face or eye gaze can significantly affect

the 2D representation of ocular features, as seen in Sec-

tion 2. The relative invariance of the Scale Invariant Fea-

ture Transform (SIFT) [7], to translation, scale, and orien-

tation change makes SIFT a potentially viable and robust

method for ocular recognition. Given a periocular image,



the SIFT algorithm produces a set of keypoints and fea-

ture vectors describing various invariant features found in

the image. The match score between two images f1 and

f2 is obtained by comparing their corresponding keypoints,

and counting the number of keypoints that match with each

other. A key advantage of this simple approach for ocular

region matching is that it avoids detection and segmenta-

tion of the iris or other anatomical features, which is often

challenging. Moreover, the relative invariance of SIFT key-

points to scale and spatial shift reduces the need for accurate

registration of the ocular regions being compared.

Although SIFT has been successfully used to perform

face [9] and iris recognition [1], direct application of SIFT

on challenging datasets, such as the FOCS dataset, may re-

sult in a poor overall performance [15]. This is primarily

due to a large number of false matches during the the match-

ing process, caused by the drastic variations in the illumi-

nation and blur. To alleviate these problems on challenging

periocular imagery, the application of SIFT is modified in

the following way:

1. Image pre-processing: To improve computational ef-

ficiency, the input ocular images are resized to have 480
pixels in height using bicubic interpolation, while the width

is varied to preserve the original aspect ratio. In addition,

adaptive local histogram equalization is performed to im-

prove the image contrast before the SIFT algorithm is ap-

plied.

2. Feature encoding: An open source implementation

of the SIFT algorithm provided in the VLFeat library [18]

was used in this work. The parameter space was explored

to maximize the ratio of matching performance to computa-

tion time. In particular, it was observed that the peak thresh-

old parameter had the largest effect on both the performance

and the computation time. Empirical evaluations suggested

an optimal value of 2 for this parameter. After incorporat-

ing the specified changes, feature encoding was performed

on the entire pre-processed image, without additional scal-

ing or registration.

3. Feature matching: Additional space-based constraints

were incorporated in the matching stage, to improve the ac-

curacy of matched keypoints. Specifically, in order for a

pair of keypoints matched by the SIFT algorithm to be ac-

cepted as a true match they must satisfy the following two

conditions: (a) Proximity constraint: The keypoints should

be located in approximately the same image region; (b) Ori-

entation constraint: The gradient direction orientations [7]

of the keypoints should be sufficiently similar. Thresh-

olds for the keypoint proximity and orientation are adjusted

based on the application. In this work, these thresholds are

set to a value of 35% of the image height for proximity, and

20 degrees for orientation.

Figure 4.2(a) illustrates the result obtained by matching

keypoints using the standard implementation of the SIFT

algorithm. It can be observed that many keypoints in dis-

parate physical regions are matched together. This is due

to the similarities found in certain features such as hair in

the eyebrow and skin patches. The improvement obtained

by incorporating the additional constraints on the proximity

and orientation of matched SIFT keypoints can be observed

in Figure 4.2(b). The addition of these constraints leads to

improved matching, thereby enhancing the overall recogni-

tion performance using challenging periocular imagery.

(a) (b)
Figure 4. (a): Keypoints matched by the standard implementation

of SIFT. (b): Matching keypoints obtained after applying the addi-

tional constraints on the proximity and the orientation parameters.

Notice that the proposed constraints help in discarding spurious

matches between keypoints.

4.3. Probabilistic Deformation Models (PDM)

As mentioned in Section 2, handling the non-rigid defor-

mation between two periocular images of FOCS database

is very critical in achieving a good recognition perfor-

mance. For this purpose, the probabilistic matching al-

gorithm, adopted from the technique originally proposed

by Thornton et al. [17] for iris matching, is used. Given

two images (a probe and a gallery) this process produces

a similarity score by taking into account the relative non-

stationary distortion occurring between them. The measure

of deformation and similarity is obtained by segmenting the

probe image into non-overlapping patches (to provide toler-

ance to valid local distortions), and correlating each patch

with the corresponding template patch. The final match

score is based on the individual patch match scores and

the corresponding deformation estimate from the respective

correlation planes. The main premise behind this algorithm

is that, for a genuine match between the template and probe,

besides a high match score, the deformation pattern from

the patches must also be valid for that class of patterns.

The fusion Optimal Trade-off Synthetic Discriminant

Function (OTSDF) correlation filter [17], based on the stan-

dard OTSDF filter [16], is used for the template design. The

template is specifically designed to produce a sharp peak at

the center of the correlation plane for a genuine match, and

no such peak for an impostor match. A deformation is said

to occur when the correlation peak is shifted from the cen-

ter of the image region as seen in Figure 5. For a given

pattern class (i.e, ocular region of a subject), the set of valid

distortions is learned from the training data. To effectively

learn and distinguish a valid distortion from just random



Figure 5. An example of genuine and impostor matching using the

PDM approach. The red boxes indicate each patch that is corre-

lated against the template. The boxes are centered on the highest

correlation value in the correlation plane in order to display the

shifts that occur. The shifts seem to be correlated when matching

the probe image with the genuine template; however, when com-

paring the probe with the impostor template, the shifts are seem-

ingly random.

movements, an undirected graph is used to capture the cor-

relation between the shifts (rather than causation), thereby

approximating the true match. The final score is computed

by performing a maximum-a-posteriori (MAP) estimation

on the probability that a probe image matches a template

image given some deformation in the image plane.

4.3.1 OTSDF Filter

It is particularly difficult to design a single robust corre-

lation filter (CF) that is tolerant to intra-class distortions

that can occur in the ocular regions (e.g., closed eye lids,

raised eyebrows, occlusions, etc.). However, there is an in-

creased chance of obtaining higher overall similarity val-

ues for genuine image pairs by designing several CFs per

region. Therefore, the fusion OTSDF correlation filter is

used in this work to jointly satisfy the design criteria via

multiple degrees of freedom, leading to robust discrimina-

tion for detecting similarities between images of the same

subject. In contrast to the individual OTSDF filter design,

the fusion CF design takes advantage of the joint properties

of different feature channels to produce the optimal output

plane. Each channel produces a similarity metric based on

a relative transformation of the observed pattern and the in-

ner sum represents a spatial cross-correlation between the

channels giving an increased chance that the similarity met-

ric will produce high peaks for genuine image pairs.

4.3.2 MAP Estimation

The goal of this technique is to authenticate a genuine im-

age by a template, and reject an impostor image. CFs pro-

vide a reliable approach to obtaining a similarity measure

between a template and probe image. However, in the pres-

ence of deformations, the matching performance of CFs

may deteriorate. Even after independently correlating non-

overlapping regions of each image, a good measure of sim-

ilarity between the probe and template needs to account for

distortions (if present). One method of executing this task

is by learning a coarse approximation of how the ocular re-

gion changes from one genuine image to the next, by de-

termining the probability of true deformation through MAP

estimation. By maximizing the posterior probability distri-

bution on the latent deformation variables, the prior distri-

bution could be used to improve the results from correlation,

and find the proper similarity.

The most likely parameter vector d, that describes the

deformations for some (possibly nonlinear) image transfor-

mation between the probe image and template, assuming

the probe is of the genuine class are determined by the

MAP estimation process. As the computational complex-

ity is high (caused by modeling all possible deformations),

the deformation is restricted to a parameterized model de-

scribed by a parameter vector d. This restricts the prior

distribution to the specific parameters which are defined

on a space with low dimensionality, which are modeled

as a multivariate normal distribution. Specifically, d is

defined such that no deformation occurs at the zero vec-

tor, which is assumed to be the mean of the distribution,

leaving only the covariance to be estimated. To deter-

mine the deformation parametrization, a coarse vector field

model is used, in which the input image is divided into

a set of small regions with corresponding translation vec-

tors {(∆xi, ∆yi)} and the deformation parameter vector

d = (△x1, ∆y1, · · · ,△xN , ∆yN )
t
. Since the generative

probability is defined over a large dimensionality (num-

ber of pixels in the probe), parameter estimation can be-

come a daunting task. Thus, the fusion OTSDF output

S (I ,T ;d) is used as a similarity measure between the im-

age I and the template T at relative deformation d, setting

p (I |T ,d) = p (S (I ,T ;d)).

4.3.3 Score Calculation

Estimating the posterior distribution of deformation given

the observed image, can become computationally expen-

sive, given the number of values the deformation vector can

take. Thus, a variant of Pearl’s message passing algorithm

is used to estimate the marginal posterior distributions at

each patch or node in the probabilistic graphical model. Fi-

nally, assuming a sparse, acyclic graphical model, a loopy

belief propagation model is used to estimate the marginal

posterior distribution at each node. The similarity mea-

sures from correlation for each image region are multiplied

by the marginal posterior distribution of deformation given



the observed image, P (dk | O). The final score is consid-

ered to be summation of the similarity measures from all the

patches in the probe image.

5. Experiments and Results

The FOCS database contains images that are acquired

from 136 unique subjects. The number of samples per sub-

ject varies from 2 to 236. At least 123 subjects have 10
samples each. In total, the FOCS database contains 9581
images, of which 4792 images correspond to the left eye,

and the remaining 4789 correspond to the right eye. For

comparison purposes, the recognition performance of iris

biometric is also studied. Based on the output obtained

from the eye detector, the iris was segmented using a modi-

fied version of the active contours without edges technique,

originally proposed by Chan and Vese [4]. The segmented

iris was encoded and matched using a publicly available,

open source iris recognition system [10].

For both the iris and periocular biometrics, matching

is performed independently for each of the left and the

right side images. For the left-to-left matching, the num-

ber of genuine and impostor scores were 267, 392 and

22, 695, 872, respectively. For the right-to-right match-

ing, these numbers were observed to be 267, 273 and

22, 667, 248, respectively. To facilitate score level fusion

using the sum-rule, the scores obtained from each technique

were: (i) independently normalized to a range of [0, 1] us-

ing the min-max normalization scheme, and (ii) converted

to similarity scores. The performance of each individual

technique, along with that of the fusion scheme, were eval-

uated by considering the (a) Equal Error Rate (EER) value,

and (b) the value of False Reject Rate (FRR) at a fixed

value (0.1%) of the False Accept Rate (FAR). Both these

values were deduced from the Receiver Operating Charac-

teristic (ROC) curves. The ROC curves for the right-to-

right matching1 using each technique are shown in Figure 6.

The normalized histograms of the genuine and impostor

scores for right-to-right matching is provided in Figure 7.

Table 1 summarizes the performances obtained using each

technique for both left-to-left and right-to-right matching.

From the results, it can be observed that our initial hypoth-

esis that the periocular biometric would perform better than

the iris biometric holds true. Among the various periocular

recognition techniques, PDM and modified SIFT provide

better performance than GOH. This is because GOH is a

global feature extraction scheme, which can result in good

performance only if the two images are perfectly registered

or localized. On the other hand, modified SIFT and PDM

provide better performance as they consider the keypoint

and deformation information, respectively.

1The ROC curves for the left-to-left matching were observed to be sim-

ilar to that of right-to-right matching.
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Figure 6. ROC curves for right-to-right matching of FOCS

database using the three individual techniques.

(a) (b)

(c) (d)

Figure 7. Normalized genuine and impostor score distributions for

right-to-right matching of FOCS database using: (a) Probabilistic

Deformation Models, (b) Gradient Orientation Histograms, and

(c) modified SIFT. (d) A close up version of the modified SIFT

scores.

Table 1. EER values and the values of FRR at a fixed value of

FAR (0.1%) for left-to-left and right-to-right matching on the

FOCS database.

Left-to-left Right-to-right

EER FRR EER FRR

PDM 23.4% 58.5% 23.9% 61.4%

GOH 32.9% 97.4% 33.2% 97.0%

m-SIFT 28.8% 67.8% 27.2% 65.9%

Iris 33.1% 81.3% 35.2% 81.2%



To observe the performance of each technique with

respect to some of the non-ideal factors present in the

database, two sets containing 30 images each from the

FOCS database were assembled. The images in the first set

exhibited non-rigid deformations, while those in the second

set contained large variations in illumination levels. The

normalized genuine scores obtained by matching these im-

ages against the other images of the database, using each

of the three techniques are summarized in Figure 8 using

box plots. From the figure, it can be observed that PDM

and GOH provide higher score values for images contain-

ing deformations and poor illumination, respectively. This

is because the PDM technique measures the correlation be-

tween image patches to generate a score, while the GOH

technique performs illumination normalization and consid-

ers the gradient orientation of the pixels.
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(b)

Figure 8. Box plots for normalized genuine scores corresponding

to select images from the FOCS database, containing large varia-

tions in (a) deformation and (b) illumination.

A weighted sum rule was used to perform the score level

fusion of the three periocular techniques.2 The optimal

weights for fusion were determined separately to achieve

two separate objectives: (i) to minimize the EER and (ii) to

minimize the value of FRR at a fixed value (0.1%) of FAR.

For both the left-to-left and right-to-right matching, the op-

timal weight set3 [w1, w2, w3] for objectives (i) and (ii)

were observed to be [0.1, 0.1, 0.8], and [0.75, 0.15, 0.10],

respectively. The ROC curves for the various combinations

of fusion for the right-to-right matching are provided in Fig-

ure 9. Table 2 summarizes the performances obtained for

both left-to-left and right-to-right matching after perform-

ing the weighted score-level fusion.

For objective (i), the weight associated with the Modified

SIFT matcher was very high (=0.8). On the other hand, for

objective (ii), the weight associated with the PDM matcher

was very high (=0.75). This suggests the importance of the

fusion approach - a single technique cannot be expected to

handle the diversity of images present in the FOCS dataset.

By adopting an information fusion scheme, the benefits of

2Incorporation of the iris matcher in the fusion scheme degraded match-

ing accuracy. Thus, only the ocular matchers were used in the fusion

framework.
3The weights w1, w2 and w3 correspond to PDM, GOH, and m-SIFT,

respectively.

individual matchers are highlighted in different portions of

the ROC curve.

Figure 9. ROC curves after performing fusion for right-to-right

matching of the FOCS database.

From Table 2, it can be observed that the fusion of all

three techniques provides better performance than fusion

of any two individual techniques, thereby suggesting the

strength of the proposed approach. It has to be noted that

the performances reflect the objectives that are used for ob-

taining the optimal weights. The optimal weights for fusion

in high security applications could be determined by mini-

mizing the FRR value at a fixed FAR. On the other hand, if

the focus is more on user convenience, the optimal weights

could be determined by minimizing the EER values.

To further evaluate its performance, the proposed fusion

approach was applied on a subset of ocular images that

were gathered from the Face Recognition Grand Challenge

(FRGC) Database. A set of 1136 left and 1136 right oc-

ular images were used for this purpose, corresponding to

a total of 568 unique subjects (2 samples per eye per sub-

ject). The first image of every subject was used as a gallery

entry, while the other was used as the probe. This exper-

imental setup was used in [13], and helps us compare the

performance of the proposed approach with that of [13] 4.

The results are listed in Table 3. From the table it can be

observed that m-SIFT provides the best recognition perfor-

mance compared to PDM and GOH. Score level fusion of

m-SIFT and PDM provides the lowest EER (e.g., 1.59% for

left-to-left matching), confirming the significance of a fu-

sion approach over a single technique for ocular matching.

4The lowest EER reported in [13] was 6.96%. This value was obtained

by the score level fusion of left-to-left with right-to-right matching using

the standard implementation of SIFT.



Table 2. EER values and FRR values at a fixed value of FAR (0.1%) for both left-to-left and right-to-right matching of the FOCS

database, after performing weighted score-level fusion.

Left-to-left Right-to-right

EER FRR EER FRR

PDM+GOH 19.5% 71.7% 19.4% 70.1%

PDM+m-SIFT 23.9% 57.6% 23.3% 60.0%

GOH+m-SIFT 31.2% 96.2% 27.2% 95.5%

PDM+GOH+m-SIFT 19.3% 70.5% 19.3% 68.8%

(0.1*PDM)+(0.1*GOH)+(0.8*m-SIFT) 18.8% 63.8% 18.8% 61.4%

(0.75*PDM)+(0.15*GOH)+(0.10*m-SIFT) 21.7% 55.4% 21.2% 58.0%

Table 3. EER values for left-to-left and right-to-right matching

on a subset of the FRGC database.

Left-to-Left Right-to-Right

PDM 4.36% 3.84%

GOH 19.74% 18.61%

m-SIFT 2.48% 2.37%

(0.3*PDM)+(0.7*m-SIFT) 1.59% 1.93%

6. Conclusions and Future work

This work presents an information fusion approach to

perform ocular recognition on highly non-ideal images in

which iris recognition may not be feasible. Since ocu-

lar recognition uses the information surrounding the eye,

the problem of iris segmentation is automatically avoided.

The proposed approach combines the biometric informa-

tion extracted using three different techniques (Probabilistic

Deformation Models, Gradient Orientation Histogram, and

modified SIFT) at the score-level using the sum rule. The

three techniques help in consolidating global, local and de-

formation information pertaining to the images. When the

performance of iris recognition is compared with that of the

proposed fusion approach, the EER is reduced from 33.1%
to 18.8% for the left-side images and from 35.2% to 18.8%
for the right-side images, respectively. These error rates re-

flect the best matching performance for ocular recognition

using a challenging database [3]. Further, experiments on a

subset of the FRGC database confirms the effectiveness of

the proposed fusion approach. Future work would include

the incorporation of other techniques (e.g., bag of features,

patch based deformation models, etc.) for feature extrac-

tion and matching. Further, we are exploring the design of

an adaptive fusion scheme, in which the weights for the in-

dividual matchers will be assigned based on the quality of

the input images.
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