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Abstract. Many scenarios require that face recognition be performed at
conditions that are not optimal. Traditional face recognition algorithms
are not best suited for matching images captured at a low-resolution to
a set of high-resolution gallery images. To perform matching between
images of different resolutions, this work proposes a method of learning
two sets of projections, one for high-resolution images and one for low-
resolution images, based on local relationships in the data. Subsequent
matching is done in a common subspace. Experiments show that our
algorithm yields higher recognition rates than other similar methods.

1 Introduction

Face recognition is a prevalent technology, with a wide range of applications in
the public and private sectors. This is facilitated by the dramatic improvements
to recognition systems in the past twenty years. Face recognition can be reliable
when images are captured under controlled conditions.

Difficulties may arise in unconstrained environments where quality images
are not easily collected. Oftentimes, these environments involve subjects that are
uncooperative or unaware that an image is being captured. In some scenarios,
it can be desirable to photograph subjects without their active participation
or knowledge, such as in surveillance videos or when the subject is at a longer
distance from the camera.

In these cases where the image acquisition environment is not ideal, captured
faces can have a much lower resolution than faces captured in a controlled setting.
Faces captured at a low resolution provide a challenge for recognition algorithms
that rely on traditional feature extraction; such features can be impossible to
compute on small images where facial features are represented by only a few
pixels. The previously mentioned problems make it challenging to compare low-
resolution (LR) images captured at testing to high-resolution (HR) images, as
the LR and HR images do not share a common feature representation.

This problem has recently received increasing attention in the biometrics
community. While näıve methods for matching LR images to HR images have
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been available for some time, algorithms tailored to LR face recognition have be-
gun to emerge. This work introduces Coupled Marginal Fisher Analysis (CMFA),
a new algorithm that learns projections that map HR images and LR images to
a common subspace. We find projections by extending the principles of Marginal
Fisher Analysis (MFA) [1], an effective linear projection method for images of the
same resolution. The formulation is closest to Simultaneous Discriminant Anal-
ysis (SDA) [2], but does not make the same assumptions about how the data is
distributed in the subspace. While SDA is optimal for Gaussian distributions,
CMFA learns projections based on the local neighborhoods of data samples, and
makes no assumptions about the global data distribution in the subspace.

Most existing methods for LR face recognition operate in the scenario where
the training and testing classes are distinct. SDA and other techniques have
been demonstrated to operate well in such scenarios [3], [4]. These techniques
are good at modeling the relation between HR and LR images that can be
extended to unseen subjects. In this process, these methods try to model the
blur function between HR and LR images, but do not account for class specific
details. However, in certain supervised settings, such as identifying people on a
watch list, we can afford to train on the class of images used in testing. Tuning
the learned projections to model class specific features along with the image
formation operation is expected to result in better classification performance.
Further, in this scenario, learning these projections taking advantage of the local
neighborhoods of the data samples is beneficial. This is the motivation for CMFA.

2 Related Work

This work addresses the matter of matching face images of different resolutions.
When pixels are used as the feature representation of the face, images of different
resolutions have feature vectors of different lengths. In this section, we discuss
different approaches to transforming images so that all data samples have a
feature vector of the same size.

A simple approach to matching LR probe images is to reduce the size of the
gallery images. Once gallery images are downsampled, traditional linear pro-
jection methods for face recognition, including Principal Component Analysis
(PCA) [5], [6], Linear Discriminant Analysis (LDA) [7], and MFA [1], can be
used. While these approaches can be effective for comparing images of the same
resolution, downsampling the gallery images needlessly discards information in
the data.

The opposite approach is to increase the resolution of the probe images.
Performing some form of super-resolution makes the probe images the same
dimensionality as the gallery images, and standard single resolution methods
can once again be used. Simple methods such as bilinear or bicubic interpolation
do not require any training. Other super-resolution methods can be trained to
learn face priors [8] or the relationship between high and low-resolution images
[9]. These approaches can be effective for reconstructing HR images, and while
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they can produce visually appealing results, they often lack the high frequency
components of true HR images to be very effective for recognition tasks.

Finally, methods that truly attempt to match images of different resolutions
have emerged. Hennings-Yeoman et al. present a method of super-resolution that
simultaneously includes feature extraction to guide the process towards recog-
nition instead of only reconstruction [10]. The methods closest to our proposed
algorithm map images from both the high and low-resolutions to a common
subspace. Li et al. learn a set of projections for each resolution using Coupled
Mapping, and also use a penalty matrix to preserve local relationships [3]. Zhou
et al. proposed Simultaneous Discriminant Analysis (SDA) to learn two sets of
projections in a similar way while adding within-class scatter and between-class
scatter to the objective function, much like LDA in the single resolution case [2].
Biswas et al. map images to a common subspace such that the distances between
HR and LR images approximate the distances between two HR images [4].

3 Coupled Marginal Fisher Analysis

3.1 Problem Statement

Assume we have a gallery of HR images H = [h1, h2, . . . , hN ], hi ∈ <M , where
N is the number of gallery images and M is the feature dimension. Provided
with each gallery image hi is a class label πi. Given a m-dimensional LR probe
image x, where m << M , we want to assign it to class

πi where i = arg min
i

d(fh(hi), fl(x)), (1)

where d(·, ·) is a distance metric and fh(·) and fl(·) are functions that map
HR and LR images to a common subspace. If fh(·) and fl(·) are sets of linear
projections, then Eq. 1 can be rewritten as

πi where i = arg min
i

d(PHhi,PLx), (2)

where PH and PL are m̂ ×M and m̂ ×m matrices, respectively. The distance
function d(·, ·) is therefore computed on m̂-dimensional data, where m̂ ≤ m.
Euclidean distance is chosen for this work.

When learning PH and PL, we recognize that we want d(PHhi,PLx) to be
small when x belongs to the same class as hi, and large otherwise. Therefore,
our objective function is

J(PH ,PL) = min

∑
πi=πj

‖PHhi −PLlj‖22wij∑
πi 6=πj

‖PHhi −PLlj‖22wPij
, (3)

where L = [l1, l2, . . . , lN ] is the set of LR training images. In the absence of LR
training images, HR training images can be downsampled and blurred instead.
W and WP represent intrinsic and penalty adjacency matrices, respectively,
that weight image pairs to be emphasized when learning PH and PL. For more
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discussion about these matrices, refer to [1]. The definitions for these matrices
used in this work are provided in the next section.

If we assume that wij = 0 if πi 6= πj and wPij = 0 if πi = πj , then Eq. 3 can
be rewritten as

J(PH ,PL) =

min
Tr(PT

HHDHHTPH+PT
LLDLLTPL−PT

HHWTLTPL−PT
LLWHTPH)

Tr(PT
HHDPHHTPH+PT

LLDPLLTPL−PT
HHWPTLTPL−PT

LLWPHTPH)

(4)

where DL, DH , DPL, and DPH are diagonal matrices defined as dLii =
∑
j wij ,

dHjj =
∑
i wij , d

PL
ii =

∑
j w

P
ij , and dP

H
jj =

∑
i w

P
ij . Tr(·) represents the trace

operator. Eq. 4 can be rewritten as

J(PH ,PL) = min
Tr(PTXAXTP)

Tr(PTXBXTP)
, (5)

where

P =

[
PL
PH

]
,X =

[
L 0
0 H

]
,A =

[
DL −W
−WT DH

]
, and B =

[
DPL −WP

−WPT DPH

]
. (6)

We can compute Ã = XAXT and B̃ = XBXT , and substituting these into
Eq. 5 yields

J(PH ,PL) = min
Tr(PT ÃP)

Tr(PT B̃P)
, (7)

which can be turned into the generalized eigenvalue problem,

ÃP = λB̃P (8)

3.2 Computing W and WP

MFA. MFA is a discriminative projection learning algorithm designed to be
effective on data irrespective of the distribution of each class [1]. On the other
hand, LDA is designed to be optimal when each individual class follows a Gaus-
sian distribution, but will not be as effective on non-Gaussian data classes. As
discussed in [1], MFA does not encode global relationships between classes into
the intrinsic and penalty adjacency matrices. Instead, MFA encodes the intra-
class compactness and interclass separability with local relationships. The adja-
cency matrices are encoded using nearest neighbors as follows:

wij =

{
1, if i ∈ N+

k1
(j) or j ∈ N+

k1
(i)

0, else.
(9)
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wPij =

{
1, if (i, j) ∈ P+

k2
(πi) or (i, j) ∈ P+

k2
(πj)

0, else.
(10)

N+
k1

(i) represents the set of the k1 nearest neighbors of xi from the same

class. ci represents the class label of xi, and P+
k2

(πi) represents the set of the
k2 nearest pairs among the set {(i, j), i ∈ πi, j /∈ πi}. In essence, MFA seeks to
project data into a subspace so that a particular data sample is projected close
to its local neighborhood from the same class. At the same time, it attempts to
maximize the distance between the pairs of data from different classes that were
originally the closest together. Note that with this formulation, MFA has two
parameters which must be learned, k1 and k2.

CMFA. CMFA uses similar rules for defining W and WP. Initially, the same
rules were used, and nearest neighbors were computed using the Euclidean dis-
tance of HR images. Tests showed that a linear combination of the Euclidean
distance of HR images and LR images had a negligible effect on the nearest
neighbors when the LR images were generated from corresponding HR images.

One change that was tested and retained after stronger performance was the
rule for defining WP. We tried forming WP by finding the nearest neighbors
between classes of each data sample instead of the closest pairs between classes,
so the penalty adjacency graph is computed as follows,

wPij =

{
1, if i ∈ N−k2(j) or j ∈ N−k2(i)
0, else.

(11)

where N−k2(i) represent the of the k2 nearest neighbors of xi from a different
class.

3.3 Regularization

Often is it desirable to add in a regularization factor when learning projections.
If we consider Eq. 5, we consider that regularization can be added as follows,

J(PH ,PL) = min
Tr(PTXAXTP)

Tr(PTX(B + αI)XTP)
, (12)

where I is the identity matrix, and α is the regularization constant. If regular-
ization is included, the derivation of the eigenvalue problem is no different, since
the sum of B + αI is known.

4 Experiments

4.1 General Testing Protocols

We compare CMFA to SDA and MFA. SDA is a coupled mapping and learns
projections for HR and LR probe images at the same time. On the other hand,
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Fig. 1. HR and corresponding LR images from PIE (left 3 columns) and Multi-PIE
(right 3 columns)

MFA must be learned at a single dimension. Results labeled ‘MFA’ is a baseline
using HR gallery and probe images. ‘MFA-LR’ uses LR gallery and probe images.
Results for ‘MFA-BL’ use HR gallery images and learns HR projections, and
then uses LR probe images that are upsampled to the HR dimensionality using
bi-linear interpolation.

Both MFA and CMFA require two parameters, k1 and k2. There is no clear
method for setting these values, so a grid search is performed to find which values
of k1 and k2 to use for each test. Similarly, different values for the regularization
constant α are tested for all tested algorithms. We tested the algorithms with
values of α = [10−6, 10−5, 10−4], and found that in nearly all cases, α = 10−5

was optimal for the algorithms used.
In many cases, using as many projections as is possible to learn does not

provide the best results. Because the 12 × 12 LR images used have 144 fea-
ture dimensions, we report the single best result from using [10, 20, 30, ..., 140]
projections.

Following projection learning, matching of probe images is done by finding
the Euclidean distance nearest neighbor. Performance is measured by rank-1
identification rate, which equals the percentage of probe images that find a true
match using the nearest neighbor classification.

All reported results are the average of 20 trials.

4.2 PIE / Multi-PIE

For testing we use the CMU Pose, Illumination, and Expression (PIE) database
[11], and the CMU Multi-PIE database [12]. We take a part of the PIE dataset
containing frontal images of 66 subjects with varying illumination, such that each
subject has 21 images taken in one session. Multi-PIE addresses some concerns
of the PIE dataset, and includes 337 subjects, with multiple sessions (up to 5)
for most subjects. Again, frontal images with a neutral expression are used. Each
of the 337 subjects has between 20 and 100 images (20 per session). Images in
both datasets are registered based on eye locations. For all tests, HR images are
48× 48, and in lieu of genuine LR images, they are generated by downsampling
and blurring the HR images to 12× 12 (see Fig. 1).
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Table 1. Rank 1 identification rates when training on a set of gallery images, and
testing on LR and HR probe images. The number in parentheses for Data is the number
of gallery images per subject. The number in parentheses for each reported performance
level is the standard deviation over 20 runs.

LR Probe HR Probe

Data SDA CMFA MFA-LR MFA-BL SDA CMFA MFA

PIE 75.07 78.34 78.58 45.13 78.68 84.33 83.82
(2) (2.26) (2.56) (2.85) (6.11) (2.28) (2.39) (2.42)

PIE 89.87 92.66 93.61 38.50 92.26 94.44 93.30
(4) (2.14) (1.48) (1.41) (4.93) (2.03) (1.28) (1.53)

PIE 95.30 97.83 98.17 35.10 97.45 98.47 98.07
(6) (1.29) (0.77) (0.69) (5.37) (0.87) (0.65) (0.72)

Multi-PIE 69.71 71.61 65.29 9.53 74.18 75.48 72.08
(2) (0.93) (0.81) (1.10) (1.45) (1.00) (0.99) (1.25)

Multi-PIE 94.00 94.46 91.80 3.58 96.32 96.03 87.54
(6) (0.44) (0.46) (0.45) (1.03) (0.31) (0.46) (0.61)

Multi-PIE 96.46 96.80 95.16 2.90 98.19 98.13 93.85
(10) (1.32) (1.16) (1.32) (0.66) (0.77) (0.77) (1.18)

The data is split such that each subject has an equal number of images in
the gallery, and the remaining images become the probe set. The gallery images
are then used for training. For tests on PIE, the best parameters for CMFA
was k1 = 2 and k2 set to a value between 5 and 25. For Multi-PIE, k1 = C
where C equals to the number of training images per class, and k2 was equal to
roughly C3. Small changes in the value of k2 do not have a significant impact
on performance.

Table 1 shows that CMFA and MFA both outperform SDA on the PIE
dataset, and CMFA is the best performing algorithm on the Multi-PIE dataset.
The table shows similar trends when testing HR probe images, but it is inter-
esting to note that CMFA and MFA-LR both outperform the baseline MFA in
some cases. Fig. 2 shows that on the Multi-PIE dataset it is not necessary to
learn many projections to achieve the highest possible performance on LR probe
images.

CMFA’s better performance compared to SDA indicates that CMFA does a
better job discriminating between classes it trains on. This is consistent with the
relative performance between MFA and LDA [1].

While the difference between CMFA and SDA is approximately one to two
standard deviations, given a particular amount of training, Fig. 3 shows that
while the performance does vary between the 20 trials, the relative performance
is much more consistent. This indicates that while the selected gallery has an
impact on the performance of each algorithm, the advantage of CMFA is not
tied to the particular images in the gallery. A paired t-test comparing CMFA
and SDA showed that p < .0001 for each experiment setting reported in Table
1, indicating a significant difference in their respective performances.
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Fig. 2. Performance on LR probe images, with 2 gallery/training images per subject
on the PIE dataset (left) and Multi-PIE dataset (right).

4.3 LR Feature Representation

One of the benefits of coupled mapping is that it can be used for effective LR
face matching when images are too small for most feature extraction techniques
used in face recognition. Still, it is possible that some feature representations
can be effective for lower resolution images.

While the previous results are based on using the pixels in the original im-
ages, we also consider two feature extraction techniques which are designed with
the goal of illumination invariance. Simplified Local Binary Pattern (SLBP) con-
siders the number of pixels in the 8-connected neighborhood that have a higher
intensity than the pixel being considered [13]. The result for each pixel is an
integer value between 0 and 8. We exclude pixels that on the edge of images
that do not have an 8-connected neighborhood.

We also consider color ratio (CR) as a means of illumination invariance [14].
CR is defined as

I(x, y) =
I(x, y)

µ(h(x, y))
(13)

where I(x, y) is the pixel in an image, and h(x, y) is a window around I(x, y).
We only tested a window size of 3 × 3. As with SLBP, we do not compute the
CR for the pixels on the edge of the image. Thus, for an K × K image, the
corresponding SLBP and CR images used are K − 2 × K − 2. An example of
SLBP and CR can be seen in Fig. 5.

We tested these methods on the PIE dataset, using 2 training/gallery images
per subject as in Section 4.2. We tested CMFA and SDA over a range of resolu-
tions for the LR probe images, applying SLBP and CR to both the HR and LR
images when using them. When testing with CMFA, we used the best param-
eters learned in earlier test, and did not relearn the values for the new feature
representations. Results can be seen in Fig. 5. It is observed that at lower reso-
lutions, just using the pixels is the most effective. However, as the resolution of
the probe images become larger, the recognition rate when using pixels does not



Coupled Marginal Fisher Analysis 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
70

72

74

76

78

80

82

84

Trial

R
an

k 
1 

R
ec

og
ni

tio
n 

R
at

e

 

 

CMFA
SDA

Fig. 3. Performance for each of 20 trials
on PIE, using 2 training images per sub-
ject. Trials are sorted by CMFA perfor-
mance.

10 12 16 20 24 30 36
45

50

55

60

65

70

75

80

85

90

95

LR Resolution

R
an

k 
1 

R
ec

og
ni

tio
n 

R
at

e

 

 

CMFA − Pixels
CMFA − SLBP
CMFA − CR
SDA − Pixels
SDA − SLBP
SDA − CR

Fig. 4. Performance of different feature
representations for coupled mapping. Re-
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gallery/training images per subject.

Fig. 5. Sample from PIE dataset showing the original image (left), image using Sim-
plified LBP (center), and image using color ratio (right).

increase much at all, whereas both CR and SLBP features improve dramatically.
Fig. 5 also shows that the as the resolution changes, the performance difference
between CMFA and SDA stays nearly constant when using pixels. When using
SLBP and CR, the difference between the two algorithms is much smaller.

Overall, it seems that using pixels is the best of the three options at very low
resolution, while color ratio helps improve performance as the probe image is a
higher resolution. Finding the best feature representation for different resolutions
can help systems that capture images over a range of different resolutions.

5 Conclusions

The work presents CMFA, an algorithm for performing coupled mapping to
match images of different resolutions. CMFA appears to work well when it can
learn from the local relationships that will be encountered in testing. CMFA
thus provides an alternative solution to LR face matching that can be more
desirable depending on the application. In addition, we show that some basic
image processing can improve LR face recognition results. In future work we
would like to more thoroughly explore different LR feature representations, as
well as consider other options for learning projections with coupled mapping.
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