
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 40, NO. 3, MAY 2010 495

Extended-Depth-of-Field Iris Recognition Using
Unrestored Wavefront-Coded Imagery

Vishnu Naresh Boddeti, Student Member, IEEE, and B. V. K. Vijaya Kumar, Fellow, IEEE

Abstract—Iris recognition can offer high-accuracy person
recognition, particularly when the acquired iris image is well
focused. However, in some practical scenarios, user cooperation
may not be sufficient to acquire iris images in focus; therefore,
iris recognition using camera systems with a large depth of field
is very desirable. One approach to achieve extended depth of field
is to use a wavefront-coding system as proposed by Dowski and
Cathey, which uses a phase modulation mask. The conventional
approach when using a camera system with such a phase mask
is to restore the raw images acquired from the camera before
feeding them into the iris recognition module. In this paper, we
investigate the feasibility of skipping the image restoration step
with minimal degradation in recognition performance while still
increasing the depth of field of the whole system compared to
an imaging system without a phase mask. By using a simulated
wavefront-coded imagery, we present the results of two differ-
ent iris recognition algorithms, namely, Daugman’s iriscode and
correlation-filter-based iris recognition, using more than 1000 iris
images taken from the Iris Challenge Evaluation database. We
carefully study the effect of an off-the-shelf phase mask on iris
segmentation and iris matching, and finally, to better enable the
use of unrestored wavefront-coded images, we design a custom
phase mask by formulating an optimization problem. Our results
suggest that, in exchange for some degradation in recognition
performance at the best focus, we can increase the depth of field by
a factor of about four (over a conventional camera system without
a phase mask) by carefully designing the phase masks.

Index Terms—Challenging iris recognition, correlation filters,
extended depth of field, wavefront coding.

I. INTRODUCTION

THE performance of an iris recognition system depends
greatly on how well the iris acquisition system captures

the texture detail which generally requires the iris to be within
the focus volume of the acquisition system. Hence, conven-
tional iris image acquisition systems require user cooperation to
a large extent in positioning the head so that the eyes are located
within the focus volume of the imaging system. Therefore, an
iris acquisition system with a greater depth of field provides us
greater flexibility and robustness. Furthermore, camera systems
estimate the position of the user by adjusting the pan, tilt, and
focus, which is usually not perfect. Having a greater depth of
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field (defined as the distance range from the camera over which
the subject is acceptably sharp in the image) makes this task
easier for the camera system.

The traditional solution to increased depth of field is to
increase the f number of the lens. This translates to using a
smaller aperture which, in turn, may decrease—depending on
the sensor pixel size—the effective resolution of the camera
system due to diffraction and also reduce the amount of light
captured by the sensor, thereby hurting the signal-to-noise ratio.
The light level can be increased by increasing the exposure
time. Increased exposure time, however, introduces motion blur
since it would be unrealistic to expect the eyes to be perfectly
still for the increased duration of the exposure.

One way to achieve extended depth of field without sacrific-
ing aperture size is to take advantage of computational imaging
which combines optics with digital signal processing. To extend
the depth of focus of an imaging system, Dowski and Cathey
[1], [2] proposed the use of a phase mask. The idea is to use
phase modulation to increase focus tolerance along the axis
of the lens. Under misfocus, the modulation transfer function
(MTF) of a conventional optical system goes to zero at some
frequencies. In addition, the shape of the MTF under misfocus
is significantly different from the shape of the MTF in focus
(see Fig. 1). On the other hand, the MTF of a wavefront-coding
system does not have any nulls over a broad range of misfocus,
and the shape of the MTF under misfocus does not change
appreciably compared to that under the best focus (see Fig. 2).
Both these properties can be exploited to increase the depth of
field of an iris recognition system.

Avoiding MTF nulls is attractive since, in this case, there are
no frequencies which are irretrievably lost, thereby preserving
all the information in the signal. Therefore, at least in theory,
we can recover the original information and achieve greater
depth of field at the same time. The effect of wavefront coding
can be modeled as a linear operation on an image obtained
from a conventional camera; therefore, any iris recognition
algorithm, which is tolerant to such linear operations, is an at-
tractive candidate when using wavefront-coded imagery. Many
correlation filters (such as the minimum average correlation
energy (MACE) filter [3]) can compensate for any information-
preserving linear operation [4] as long as the same linear
operation is applied on both the gallery and the probe im-
ages, making correlation filters very attractive for this task.
At the same time, the popular iriscode algorithm [5]–[7] also
has some tolerance to the phase modulation caused by wave-
front coding since the algorithm depends only on quantized
phase values (four quantization levels) of local Gabor wavelet
responses.
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Fig. 1. MTF of conventional camera. (a) MTF of a conventional 1-D aperture
in focus. (b) MTF of a conventional 1-D aperture with misfocus parameter ψ =
π2/2 [see (9)].

Previous evaluations [8]–[10] on using wavefront coding for
iris recognition have demonstrated that using wavefront-coded
imagery for iris recognition can increase the depth of field of
the whole system without adversely affecting the recognition
accuracy. Most of these evaluations were done on a small
and carefully selected data set having both real and simulated
images. Building upon this, we aim to accomplish the following
goals in this paper.

1) Evaluate the performance of iris recognition when using
wavefront-coded imagery on a large data set.

2) Systematically study the effect of wavefront coding on
different parts of the iris recognition pipeline.

3) Usually, wavefront-coded images are restored before be-
ing used for recognition. This image restoration process
is computationally expensive, thereby slowing down the
iris recognition process. Thus, in this paper, we wish
to study the feasibility of using raw (i.e., unrestored)
image outputs from the camera directly, relying on the
robustness of the recognition algorithms to handle the
blurring caused by wavefront coding. Skipping the image
restoration step helps in avoiding the computational com-
plexity and hardware required for performing this task.

4) Lastly, we would like to compare the performance of
two different iris recognition algorithms (iriscode [5]
and correlation-filter-based method [11]) when using
wavefront-coded imagery.

Fig. 2. MTF of wavefront-coded camera. (a) MTF of a 1-D wavefront-coded
aperture in focus. (b) MTF of a 1-D wavefront-coded aperture with misfocus
parameter ψ = π2/2 [see (9)].

Since there is no publicly available data set of wavefront-
coded imagery with a large number of images, we use simulated
images in our experiments. For this purpose, we choose our
images from the Iris Challenge Evaluation (ICE) [12] database
(see Section V for more details on how the images were
chosen). It must be noted that, in the images so selected, it is
possible that the iris was not in the focal plane of the camera
system when capturing the original images. Therefore, the
images obtained by simulation would be a convolution of the
original image by the simulated point spread function (PSF)
and the PSF of the unknown camera system that generated
the original image. Similarly, the noise that is added during
simulation would be on top of the noise added while capturing
the original image. This is the main limitation of our use of
simulated iris imagery; therefore, the conclusions we draw
from our experiments would be conservative, and the actual
performance might be better on real wavefront-coded imagery.
Having said that, simulated imagery does provide us with
flexibility in how many different types of experiments we can
conduct and also in studying the effect of wavefront coding
on various aspects of the recognition algorithm. For instance,
we can obtain coded images at any desired distance from
the camera and with any desired resolution along the optical
axis. Furthermore, by using simulated imagery, one can easily
evaluate the effect of changing the parameters of the wavefront-
coding mask and the type of mask itself.



BODDETI AND KUMAR: EXTENDED-DEPTH-OF-FIELD IRIS RECOGNITION 497

Fig. 3. Examples of iris segmentation on conventional images. (a) −4 cm. (b) 0 cm. (c) +4 cm.

Fig. 4. Examples of iris segmentation on wavefront-coded images. (a) −5 cm. (b) 0 cm. (c) +5 cm.

Since the overall performance, both in terms of depth of
field and recognition accuracy, is affected by the following two
aspects of the iris recognition pipeline, we investigate them
separately to fully understand the advantages and challenges of
using wavefront coding in iris acquisition systems.

1) The blurriness caused by wavefront coding affects iris
segmentation, which, in turn, affects the recognition
accuracy.

2) Due to the phase modulation introduced by wavefront
coding, the iris texture undergoes an approximately linear
transformation which is reversible via a linear reconstruc-
tion. However, noise prevents this reconstruction from
being perfect. This linear transformation has an adverse
effect on the recognition accuracy unless accounted for
by the matching algorithm.

From here onward, we will refer to two types of iris im-
ages: Conventional images are those obtained without any
wavefront coding, and wavefront-coded images refer to the
raw output images (i.e., without restoring the wavefront-
coded images) from an imaging system employing wavefront
coding.

The rest of this paper is organized as follows. We first de-
scribe the preprocessing done to the iris images followed by the
feature extraction employed. Next, we describe the two kinds
of matching that we compare, namely, iriscode and correlation
filters. Then, we describe how we simulate the iris image data
and discuss the recognition results on these simulated data.
Finally, we conclude with some observations and analysis of
our results.

II. PREPROCESSING

Before we extract texture features or perform matching, we
preprocess the iris images, which involves segmentation and
normalization of the iris to be able to compare iris images of
different size, and finding and masking of eyelashes and any
specularities.

A. Segmentation

The performance of iris recognition systems is greatly de-
pendent on the ability to isolate the iris from the other parts
of the eye such as eyelids and eyelashes. Commonly used iris
segmentation techniques use some variant of edge detection
methods, and since the blurring introduced by both conven-
tional misfocus and by wavefront coding smudges the edge
information to the point of there not being a discernible edge,
iris segmentation becomes a challenging task. To alleviate this
problem, we use a region-based active contour segmentation
[13]. This technique segments the image based on the intensity
distribution of a region rather than looking for sharp edges,
making it more robust to blurring than an edge-based active
contour. Figs. 3 and 4 show some of our segmentation results
on iris images (obtained via the simulations, to be explained
in Section V) at various distances from the focal plane of the
camera system. Note that, at 0 cm (all distances are relative
to the focal plane), conventional iris images exhibit more de-
tails than wavefront-coded images. However, over the distance
ranges shown, conventional iris images exhibit more variability
than wavefront-coded iris images.

B. Normalization

Once the iris boundaries have been found, we map the iris
pattern into the polar domain as is popularly done. This has two
effects.

1) It normalizes different irises to the same size, thus allow-
ing for proper matching.

2) Any rotation of the iris manifests as a cyclic shift (along
the angular axis) in the polar domain, which can be
handled easily by both correlation filters and iriscode (via
circular shifts).

III. FEATURE EXTRACTION

Gabor filters with carefully selected parameters have been
shown to be the most discriminative bandpass filters for iris
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Fig. 5. Application of correlation filter on a query image.

image feature extraction among a variety of wavelet candidates
[14]. A Gabor filter is a modulated Gaussian envelope and is
given by

g(ρ, φ) = exp

[
−1

2

(
ρ2

σ2
ρ

+
φ2

σ2
φ

)
− jρ(ω sin θ) − jφ(ω cos θ)

]

(1)

in the polar domain (ρ, φ) where the filter is applied to the
iris pattern. Here, θ denotes the wavelet orientation, σρ and σφ

denote the wavelet extents in the radial and angular directions,
respectively, and ω denotes the modulation frequency of the
wavelet. By varying these parameters, the filters can be tuned
to extract features at different scales, rotations, frequencies,
and translations. We use a set of these differently localized
Gabor filters as our feature extraction filter bank. The filter bank
used in our experiments has two scales and four orientations
for a total of eight channels, and features are extracted at
every point of the unwrapped iris (Daugman’s method uses
only 1024 Gabor filters). More details on the parameters of
the Gabor filters used and how they were chosen can be found
in [14]. We also divide the unwrapped iris into multiple (42
in our experiments) patches when using correlation filters for
matching, and the projections of these patches onto the Gabor
bases yield our features. We finally combine the recognition
cues (correlation peak sharpness metrics) of each patch to come
up with a final match score. Another point to note is that
the bandpass filters we use for feature extraction have been
optimized on in-focus conventional iris images, and we use the
same Gabor filters throughout our experiments.

IV. MATCHING

One of the goals of this paper is to compare the performance
of the popular iriscode method of matching with correlation-
filter-based matching in terms of robustness to segmentation
errors, robustness to blurring caused in a conventional iris
acquisition system, and robustness to blurring caused by wave-
front coding.

A. Iriscode

The phase of the complex Gabor wavelet projections ob-
tained, as explained in the previous section, is quantized to 2 b
by mapping the phase to one of the four quadrants in the
complex plane. All the bits obtained this way constitute an
iriscode. It must be noted that, while it was not the original
intent, this phase quantization also provides robustness to the

phase modulation introduced by the wavefront-coding system
since there would be errors in the bits only when the phase
modulation is large enough to cause the phase to change and
fall into another quadrant. Any two irises are compared by
matching their respective iriscodes. The matching is done by
computing the normalized Hamming distance between the two
binary iriscodes. There are also corresponding masks to identify
which bits in the iriscode to use for matching. The mask
bits are set to either one or zero, depending on whether the
corresponding iriscode bits are used or not used (e.g., due to
eyelid occlusions) for matching. When matching two iriscodes
A and B with respective masks mA and mB , the dissimilarity
d is defined as

d =
‖(A ⊕ B) ∩ mA ∩ mB‖

‖mA ∩ mB‖ (2)

where ⊕ denotes an XOR operation and ‖ ‖ denotes the weight
(i.e.,the number of nonzero elements) of the binary pattern. Ro-
tation of the eye is compensated for by matching the iriscodes
at different circular shifts along the angular axis and taking the
minimum normalized Hamming distance value.

B. Correlation Filters

A correlation filter is a spatial frequency domain array
(loosely called a template) that is specifically designed to recog-
nize a particular pattern class represented by a set of reference
patterns [15], [16]. A given query pattern is matched against
this template by performing a cross-correlation. To make this
efficient, the cross-correlation is performed in the frequency
domain, taking advantage of the fast Fourier transform

C(x, y) = FT−1 {FT {I(x, y)} · F ∗(u, v)} (3)

where I(x, y) is a query pattern and F (u, v) is the frequency
domain array representing the correlation filter. The resulting
cross-correlation output C(x, y) should contain a sharp peak if
the query is authentic and no such peak if it is an impostor as
shown in Fig. 5.

The principal advantages of using correlation filters are the
following.

1) Generation of the whole correlation plane in one shot.
2) Graceful performance degradation in the presence of

noise or occlusions.
3) It can be designed to tolerate a variety of within-class

variations.
4) Closed-form solutions for the filters.
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To quantify the degree of sharpness of the correlation peak,
we use the peak-to-correlation energy (PCE) ratio defined as

PCE =
peak − μ

σ
(4)

where μ and σ are the mean and standard deviation of the
correlation plane, respectively.

There are a variety of advanced correlation filters to choose
from [17]. Among these, MACE [3] filter and optimal tradeoff
synthetic discriminant function (OTSDF) filter [18] (a more
general form of MACE filter) have been found to perform
well when applied to the problems of face, fingerprint, and
iris recognition [19]–[21]. In this paper, we use the OTSDF
filter which provides an optimal tradeoff between the average
correlation energy (ACE) and the output noise variance (ONV).
The ACE is the energy in the correlation plane averaged over
the training images, and minimizing ACE suppresses the side-
lobes, resulting in sharp correlation peaks. Minimizing ONV
improves the filter’s tolerance toward noise. Formulating this in
a Lagrangian framework yields a closed-form solution for the
optimal tradeoff filter.

The iris patterns are represented as multichannel features,
with each channel being the response of one Gabor filter, from
our filter bank to the iris image. Thus, we can design one filter
for each channel and combine the resulting correlation plane
outputs. However, one can do better by jointly optimizing the
K filters [22]; such filters are referred to as “fusion correlation
filters.” This leads to

H = A−1X(X+A−1X)−1u (5)

where H is the frequency domain representation of the corre-
lation filter and A = αS + (1 − α)P̄ , with S being the cross-
power spectral density matrix of the noise in the channels and
P̄ being the mean cross-power spectral density between the
different feature channels. The parameter α trades off peak
sharpness for distortion tolerance. See [11] for more details on
fusion OTSDF design and use.

V. SIMULATIONS

A. Database

In this paper, we use only a subset of the ICE data set.
Sixty one subjects were manually selected such that most of the
images of these subjects are either in focus or close to being in
focus (i.e., within the depth of field of the actual camera used).
We avoided subjects with only one image in the database and
subjects with heavy eyelash occlusions. This was done since
the main goal of this paper is to evaluate the performance of
the iris recognition methods when using extended depth of field
methods, and we should avoid other degradation factors such as
heavy eyelid/eyelash occlusion affecting the evaluation. In total,
our evaluation was done on 1061 images. The chosen images
have been used to simulate both the wavefront-coded images
and the conventional out-of-focus images. Figs. 6 and 7 show
some sample images.

Fig. 6. Examples of ICE images used for evaluation.

Fig. 7. Examples of ICE images not used for evaluation. (a) Iris too close
to the image boundary, which would get cropped out when simulating images
closer to the camera due to image magnification. (b) Badly out of focus. (c) Very
low contrast between pupil and iris along with eyelid shadow. (d) Eyelashes on
the iris.

B. Simulation Methodology

The simulation of conventional defocus and wavefront-coded
imaging was done by convolving the in-focus images with
the PSF of both normal and wavefront-coded imaging systems
after accounting for the magnification in the image on account
of the iris being closer or farther from the camera. This is
given by

g = h ∗ r + η (6)

where g is the blurred and noisy output image, h is the PSF
of the imaging system, r is the ground truth image, and η is
the Poisson noise which, following the common model [23], is
given by

η =
√

h ∗ r η1 + ση2 (7)

where η1 and η2 are zero-mean unit-variance Gaussian ran-
dom variables and σ is the standard deviation of the image-
independent noise.

The PSF model used for the two types of imagery is as given
in (8) and (10).

Conventional System:

h =
∣∣∣FT

{
P (x, y)e(iψ(x2+y2))

}∣∣∣2 (8)

where P (x, y) is one inside the lens system pupil and zero
outside, and the misfocus parameter ψ is given by

ψ =
πL2

4λ

(
1
f
− 1

do
− 1

di

)
(9)

where L is the lens pupil diameter, λ is the wavelength of light
used, f is the focal length of the lens, do is the object distance
from the first principal plane of the lens, and di is the distance
between the second principal plane of the lens and the image
plane.

Wavefront-Coding System:

h =
∣∣∣FT

{
P (x, y)e(i(ψ(x2+y2)+φ(x,y)))

}∣∣∣2 (10)
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Fig. 8. Sample simulated images of both conventional and wavefront-coded
(cubic phase mask with β = 30) optical systems.

where φ(x, y) is the phase function of the mask. We can see that
the PSF has two components, namely, the quadratic term which
comes from a conventional system and the phase function
of the wavefront-coding element. The camera parameters for
our database have been chosen based on published literature
[8]–[10].

C. Sample Images

The images were simulated using a cubic phase mask (see
Section VI) to cover a distance of 20 cm in either direction from
the focal plane with a step size of 1 cm. Fig. 8 shows some
sample simulated iris images at various distances.

VI. EXPERIMENTS AND RESULTS

In this section, we present the results of recognition ex-
periments of iriscode as well as correlation-filter-based iris
pattern matching. These experiments, a total of five, have been
designed to answer the following questions.

1) Can the depth of field of the iris recognition system be
increased using unrestored wavefront-coded imagery?

2) What is the impact of wavefront coding on different parts
of the iris recognition pipeline, namely, iris segmentation
and matching accuracy?

3) What are the bottlenecks impacting recognition perfor-
mance when using unrestored wavefront coding?

4) Can a custom phase mask be designed which is optimized
for best recognition accuracy when using unrestored
wavefront imagery?

For each experiment, we evaluate the impostor and authentic
score statistics (mean and standard deviation of match scores
plotted as small squares and vertical bars, respectively) to
determine the improvement in the imaging distance obtained
compared to the conventional iris imaging system.

To answer the first three questions, we use a cubic phase
mask φ(x, y) = β(x3 + y3), for consistency with earlier work.
Fig. 9 shows the PSF over a range of distances from the focal
plane.

A. Experiment I(a)

In this experiment, we use in-focus images, both conven-
tional and wavefront-coded (cubic phase mask with β = 30),
for training and test on unrestored images at various distances
from the focal plane of the camera. Defining the operational
range as the distance up to which the error bars of the au-
thentic and impostor scores do not overlap, we compare the
approximate operational range of the iris recognition system
both with and without the phase mask in Table I. We also
compare the performance of the two different matching tech-
niques (see Table II). Figs. 10 and 11 show the recognition
results of conventional and wavefront-coded optical systems,
respectively.

In the conventional case, the iriscode algorithm seems to
be performing better than the correlation-filter-based matching.
This suggests that the iriscode algorithm is more tolerant to
normal blur, which changes with distance from the focal plane,
compared to correlation filters since iriscode uses only the
phase information which is not adversely affected by normal
blur. When using wavefront-coded imagery, we see that both
iriscode and correlation filters significantly increase the oper-
ational distance of the recognition system. Correlation filters
perform slightly better than iriscode as reflected in the larger
operational range. This might be either due to robustness to
segmentation errors or due to its better tolerance to the blurring
caused by wavefront coding compared to the iriscode algorithm
(addressed in “Experiment III”). Tables III and IV compare
the recognition performance when using wavefront-coding and
conventional optics, respectively. Even though the increase in
the depth of field of correlation filters over iriscode may not
appear to be large, the recognition performance of correlation
filters is better than that of iriscode over the range of the
depth of field when wavefront-coded imagery is used. In fact,
the recognition performance of correlation filters at the focal
plane when using wavefront-coded imagery is as good as the
recognition performance when using conventional images. The
iriscode algorithm, however, performs slightly worse because
of its inability to fully tolerate the blurring caused by wavefront
coding.

B. Experiment I(b)

This is very similar to Experiment I(a), except that, while
training, we use sample images at different distances (can
be obtained from the in-focus image by simulation). For
correlation-filter-based matching, a single fusion OTSDF filter
uses all the training images, while in the case of iriscode, a
query is matched with all the training templates. Since the tem-
plates are trained using images from different distances, the al-
gorithms are expected to perform better than in Experiment I(a)
since the training set covers a greater range of image variation
seen during testing. In our experiments, we use images at
distances of −2 to +2 cm only from the focal plane in the
template. We do not use images at larger distances in our
template because poor segmentation at greater distances may
affect the overall filter performance. For proper comparison,
we use the same training sets for both iriscode and correlation-
filter-based matching.
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Fig. 9. PSF of a wavefront-coding system (cubic phase mask with β = 30) over a range of 22 cm away from the focal plane. The shape of the PSF does not vary
much from −5 to +6 cm. (a) −10 cm. (b) −8 cm. (c) −6 cm. (d) −5 cm. (e) −3 cm. (f) −2 cm. (g) 0 cm. (h) 2 cm. (i) 3 cm. (j) 6 cm. (k) 10 cm. (l) 12 cm.

TABLE I
OPERATIONAL RANGE COMPARISON [EXPERIMENT I(a)]

TABLE II
OPERATIONAL RANGE IMPROVEMENT [EXPERIMENT I(a)]

Figs. 12 and 13 show the results of the conventional and
wavefront-coded optical systems, respectively, and Tables V
and VI compare the performance of both iriscode and corre-
lation filters when using the two different imaging systems.

We can see an increase in the operational range in the case of
iriscode. While this is not so apparent in the case of correlation
filters, we notice an increase in the separation between the mean
authentic and impostor scores for distances whose samples
were used for training the filter. This suggests that including
samples from other distances might further help increase the
range. We pursue this further in “Experiment II.” We also
notice that both correlation filters and iriscode perform better at
distances slightly away from the focal plane than when the iris
is in focus. This is due to the fact that small variations affect
the appearance of the in-focus images more than they affect the
slightly blurred images. When the images are slightly blurred,
all the extraneous high-frequency effects like noise or other un-
wanted variations are smoothed out even while preserving the
underlying iris texture pattern. This helps improve tolerance to
slight variations, leading to better performance. Such an effect
was also observed in fingerprint recognition with correlation
filters [24] where higher resolution did not always yield better
recognition accuracy. However, as the blurring increases, the

Fig. 10. Results of iriscode and correlation filters for the conventional optical
system [Experiment I(a)]. (a) Iriscode on conventional images. (b) Correlation
filters on conventional images.

recognition performance decreases as the texture detail starts
disappearing.

C. Experiment II(a)

To quantify the matching performance alone and circumvent
the effect of poor segmentation, in this experiment, we use
the segmentation from the in-focus iris images to segment the
unrestored wavefront-coded (cubic phase mask with β = 30)
images at different distances. The results in this experiment
are expected to be better than those in “Experiment I,” since
now, all the images are segmented using the same segmentation,
and these results would be the best that one can hope for
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Fig. 11. Results of iriscode and correlation filters for the wavefront-coded
optical system [Experiment I(a)]. (a) Iriscode on unrestored wavefront-coded
images. (b) Correlation filters on unrestored wavefront-coded images.

TABLE III
RECOGNITION RESULTS ON WAVEFRONT-CODED

IMAGES [EXPERIMENT I(a)]

TABLE IV
RECOGNITION RESULTS ON CONVENTIONAL IMAGES [EXPERIMENT I(a)]

using unrestored wavefront-coded imagery. Fig. 14 shows the
results of this experiment using both iriscode and correlation
filters, and Table VII summarizes the depth of field for both the
algorithms.

The depth of field for both iriscode and correlation filters is
considerably larger compared to that in “Experiment I.” This

Fig. 12. Results of iriscode and correlation filters for the conventional optical
system [Experiment I(b)]. (a) Iriscode on conventional images. (b) Correlation
filters on conventional images.

goes to show that the smaller depth of field in “Experiment I”
was more due to poor segmentation rather than due to the
blurring caused by the wavefront-coding element. Table VIII
shows the recognition performance over the depth of field.
We can see that the recognition performance of both matching
algorithms remains good from −5 to 5 cm which incidentally
is the range over which the PSF remains roughly invariant
(see Fig. 9). At distances close to the focal plane, the corre-
lation filter’s recognition performance is as good as that using
conventional in-focus images, while iriscode performs slightly
worse. However, at distances further away from the focal plane,
the iriscode algorithm does better than correlation filters. This
is due to the fact that, closer to the focal plane, the blurring is
dominated by the cubic phase of the wavefront-coding element
to which correlation filters are tolerant, while further away from
the focal plane, the blurring is dominated by conventional blur
of the lens to which iriscode is more tolerant. This property
of the iriscode algorithm gives it slightly greater depth of
field than correlation filters. Seen in this light, the results of
“Experiment I” suggest that iriscode is more sensitive to seg-
mentation errors, caused by the blurring, than correlation filters.

D. Experiment II(b)

This experiment is very similar to Experiment I(b) (cubic
phase mask with β = 30), except that we segment all the
iris images using the segmentation at best focus. Fig. 15 and
Table IX show the results of both iriscode and correlation filters
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Fig. 13. Results of iriscode and correlation filters for the wavefront-coded
optical system [Experiment I(b)]. (a) Iriscode on unrestored wavefront-coded
images. (b) Correlation filters on unrestored wavefront-coded images.

TABLE V
OPERATIONAL RANGE COMPARISON [EXPERIMENT I(b)]

TABLE VI
OPERATIONAL RANGE IMPROVEMENT [EXPERIMENT I(b)]

on such images. In Experiment I(b), even though images at
distances from −2 to 2 cm were used for training, there was not
any appreciable increase in the depth of field. This may be due
to the fact that the PSF is constant over −2 to 2 cm, leading to
no performance improvement over Experiment 1(a). To test out
this hypothesis, in this experiment, we use images at distances
of −6, 0, and 8 cm for training. These were chosen since, at
−6 and 8 cm, the PSF is significantly different compared to the
PSF at 0 cm, as shown in Fig. 9.

Fig. 14. Results of iriscode and correlation filters for the wavefront-coded
optical system [Experiment II(a)]. (a) Iriscode on unrestored wavefront-coded
images. (b) Correlation filters on unrestored wavefront-coded images.

TABLE VII
OPERATIONAL RANGE COMPARISON [EXPERIMENT II(a)]

TABLE VIII
RECOGNITION RESULTS FOR EXPERIMENT II(a)

The results show an improvement of over 2 cm compared
to using in-focus images only for training, which confirms our
hypothesis and also shows that further gains in the depth of
field can be had from using images at other distances also for
training.

E. Experiment III

In this experiment, to study the impact of the blurring
caused by wavefront coding, we restore the wavefront-coded
(cubic phase with β = 30) images as is commonly done before
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Fig. 15. Results of iriscode and correlation filters for the wavefront-coded
optical system [Experiment II(b)]. (a) Iriscode on unrestored wavefront-coded
images. (b) Correlation filters on unrestored wavefront-coded images.

TABLE IX
OPERATIONAL RANGE COMPARISON [EXPERIMENT II(b)]

feeding those images to the iris recognition module. We use the
Lucy–Richardson iterative algorithm [25], [26] to restore the
wavefront-coded images. This technique requires an estimate
of the PSF which cannot be obtained without knowing the exact
distance of the iris from the focal plane of the lens. Hence,
the restoration is done using the in-focus PSF. The fact that
the PSF does not change its shape over a reasonable imaging
volume (see Fig. 9) helps us achieve good image deconvolution,
at least over that volume. Fig. 16 shows the results of iriscode
and correlation filters on restored wavefront-coded imagery
while using segmentation from in-focus images, and Table X
summarizes the depth of field for both the algorithms.

The depth of field for both the matching algorithms is much
larger compared to that in Experiment I and slightly larger than
that in Experiment II(a). However, the results are actually worse
than those in Experiment II(b). This lends further credence to
the fact that, as long as there are no segmentation errors, the
recognition performance of both the algorithms on unrestored
wavefront-coded imagery is almost as good as that on restored
images at a lower computational cost. Table XI shows the

Fig. 16. Results of iriscode and correlation filters for the wavefront-coded
optical system (Experiment III). (a) Iriscode on restored wavefront-coded
images. (b) Correlation filters on restored wavefront-coded images.

TABLE X
OPERATIONAL RANGE COMPARISON (EXPERIMENT III)

TABLE XI
RECOGNITION RESULTS FOR EXPERIMENT III

recognition performance over the different range of distances
from the focal plane of the camera.

F. Experiment IV

In this experiment, we investigate the effect of the gain para-
meter of the cubic phase mask. We perform Experiment II(a)
using images obtained by changing the gain parameter of
the wavefront-coding element. Increasing the gain parameter
causes the PSF of the camera system to be invariant over a
larger distance, which would increase the effective depth of
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Fig. 17. Results of iriscode and correlation filters for the wavefront-coded
optical system (Experiment IV). (a) Iriscode on restored wavefront-coded
images. (b) Correlation filters on restored wavefront-coded images.

TABLE XII
OPERATIONAL RANGE COMPARISON (EXPERIMENT IV)

field of the iris recognition system at the cost of performance
degradation at best focus. To investigate this effect, we increase
the gain parameter to β = 60. Fig. 17 shows the results of both
iriscode and correlation filters on the wavefront-coded imagery
with larger gain parameter and using segmentation from images
at best focus. Table XII summarizes the depth of field for both
the algorithms.

As expected, the depth of field of the camera system in-
creased on account of using a larger gain in the wavefront-
coding element. However, the recognition performance at best
focus is no longer as good as in Experiment II(a). Table XIII
shows the recognition performance over different ranges of
distances. While it would seem that, by increasing the gain
of the wavefront-coding element, we can arbitrarily increase
the depth of field, there is a tradeoff with the recognition
performance at best focus.

G. Experiment V

From the results of the previous experiments, we make the
following observations.

TABLE XIII
RECOGNITION RESULTS FOR EXPERIMENT IV

1) The main challenge to increasing the operational range
of iris recognition systems when using unrestored
wavefront-coded imagery comes from iris segmentation
which becomes increasingly difficult with increasing dis-
tance from the focal plane.

2) Improving the segmentation algorithm would enable us
to use the full power of the matching techniques to get
greater depth of field without modifying the existing
matching techniques.

3) Correlation filters have good recognition performance as
long as the PSF of the wavefront-coding system does not
change drastically from training and testing.

Recently, Bagheri et al. [27] showed that a pure cubic phase
mask is not the best solution for iris recognition because
of the variation in image magnification as the iris moves
along the optical axis. Furthermore, the separable form of
the phase mask results in low modulation along the diag-
onals because of the asymmetric nature of the PSF. This
also has an adverse impact on the segmentation algorithm
which is an important factor affecting the achievable depth of
field when using unrestored images. Using symmetric phase
functions can help overcome both the aforementioned limi-
tations. In light of the above observations, designing a cus-
tom phase mask which overcomes the aforementioned factors
would help us increase the gain in depth of field while using
unrestored wavefront-coded iris images. To this end, we also
use a higher order phase function, a cubic–pentic function
given by φ(x, y) = a1(x3 + y3) + a2(x2y + xy2) + a3(x5 +
y5) + a4(x4y + xy4) + a5(x3y2 + x2y3). This choice of the
phase function is motivated by the following. (For a more
detailed treatment on the advantages of using a higher order
cubic–pentic for iris images, see [28].)

1) The extra degrees of freedom of the cubic–pentic over the
cubic phase mask allows for less loss in information in the
raw wavefront-coded images.

2) The nonseparable nature of the phase function enables
us to design wavefront-coding elements such that the
resulting PSF is circularly symmetric, which makes seg-
mentation easier.

3) The extra degrees of freedom also allows the PSF to be
invariant over a larger range of distances which helps
correlation filters achieve a greater depth of field.

The coefficients of the phase mask a = [a1, a2, a3, a4, a5]
are the design parameters for the phase mask which we solve
for by setting up an optimization problem following the design
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Fig. 18. PSF of a wavefront-coding system (cubic–pentic phase mask) over a range of 24 cm away from the focal plane. The shape of the PSF does not vary
much from −5 to +6 cm. (a) −11 cm. (b) −8 cm. (c) −5 cm. (d) −2 cm. (e) 0 cm. (f) 2 cm. (g) 6 cm. (h) 8 cm. (i) 10 cm. (j) 13 cm.

Fig. 19. Examples of iris images from the wavefront-coded system using the cubic–pentic phase mask. (a) −10 cm. (b) 0 cm. (c) +10 cm.

Fig. 20. Examples of iris segmentation for images from the wavefront-coded system using the cubic–pentic phase mask. (a) −10 cm. (b) 0 cm. (c) +10 cm.

procedure in [28], with minor modifications to reduce the
computational complexity and also to more forcibly enforce the
solution of the resulting PSF to be circularly symmetric

a = arg min
a

wDD(a) + wSS(a) (11)

where wD and wS are weights for the objective functions D(a)
and S(a) defined as follows:

D(a) =
∥∥∥∥ ∂2

∂τ2
H(a, u, v, 0)

∥∥∥∥
E

≈
(∑

n

∑
m

∣∣∣∣ ∂2

∂τ2
H(a, un, vm, 0)

∣∣∣∣
2
) 1

2

(12)

S(a) =
∑
ρ0∈C

∑
m

|H(a, ρ0, αref , 0) − H(a, ρ0, αm, 0)| (13)

where H(a, u, v, τ) is the optical transfer function of the
wavefront-coded system, (u, v) are the normalized spatial fre-
quency variables, (ρ, α) are the polar coordinates in the fre-
quency plane (u, v), and C is a random set of radii ρ. D(a)
is the objective function which enforces the invariance of the
optical transfer function to defocus, while S(a) is the objec-
tive function which forces the resulting PSF to be circularly
symmetric. In our experiments, the weights wD and wS were

chosen such that the contributions from the two objective
functions are of the same order. Since the solution space is
densely populated with local minima, we use a Monte Carlo
simulation by randomly generating tens of thousands of starting
points and using the top 1% promising trials for optimization.
All the coefficients ai’s are restricted to −500 ≤ ai ≤ 500. One
solution obtained from our optimization with the least cost
function is a = [192.68,−488.75, 93.94,−423.80,−310.68].

Fig. 18 shows the PSF of this custom-designed phase mask
over a range of 24 cm away from the focal plane. Observe
that the PSF remains mostly invariant to defocus over a large
part of this range. Fig. 19 shows some images when using
the designed cubic–pentic phase mask, and Fig. 20 shows the
results of our segmentation algorithm on these images. We can
see that, even at best focus, the image is fairly blurred; however,
images at other distances look very similar to the image at best
focus. It must also be noted that our segmentation algorithm
performs reasonably even at distances far away from the focal
plane due to the circular symmetry of the PSF, while it failed
when segmenting images from the cubic phase mask at similar
distance from the focal plane.

By using the images from the designed phase mask, we
conduct Experiment I(a). Fig. 21 shows the results of both
iriscode and correlation filters when using the cubic–pentic
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Fig. 21. Results of iriscode and correlation filters for the wavefront-coded op-
tical system (Experiment V). (a) Iriscode on restored wavefront-coded images.
(b) Correlation filters on restored wavefront-coded images.

TABLE XIV
OPERATIONAL RANGE COMPARISON (EXPERIMENT V)

TABLE XV
RECOGNITION RESULTS FOR EXPERIMENT V

phase mask. Table XIV summarizes the depth of field for both
the algorithms, and Table XV shows the recognition perfor-
mance over different ranges of distances.

As expected, the depth of field of the camera system in-
creased greatly over a conventional camera system. The oper-
ational range in this case is larger than that in Experiment III,
but the recognition performance at best focus is no longer as
good as that in Experiment II(a). This can be explained by the
fact that, while designing the phase mask, the constraints we
used were only on the circular symmetry of the phase mask and

TABLE XVI
SUMMARY OF RESULTS: GAIN IN DEPTH OF FIELD IS THE RATIO OF THE

DEPTH OF FIELD ACHIEVED BY WAVEFRONT CODING TO THE DEPTH

OF FIELD OF A CONVENTIONAL CAMERA FOR EACH ALGORITHM

(GIVEN BELOW THE NAME OF THE ALGORITHM, CORRELATION

FILTERS ABBREVIATED AS CF)

invariance to defocus and that there was no explicit constraint
on the acceptable amount of blurring at best focus. However,
adding such a constraint would compromise the circular sym-
metry of the phase mask and also the invariance to defocus.
Therefore, this delicate tradeoff needs to be made on a case-by-
case basis depending on the performance of the segmentation
and matching algorithm.

Table XVI summarizes the results of all our experiments for
extending the depth of field of iris recognition systems.

VII. CONCLUSION

Iris recognition technology can achieve very high matching
accuracy but still requires substantial user cooperation. To ease
this requirement on the user, we require that the operational
range of the iris acquisition system be larger than what it is
today. Wavefront coding offers a solution to achieve this, but
there have not been any large-scale tests to quantify and confirm
the increase in the depth of field that can be achieved. In this
paper, we have addressed this problem by using a very large set
of simulated wavefront-coded images for evaluation. We have
also carefully investigated the feasibility of using unrestored
wavefront-coded images for recognition since this helps reduce
the computational cost associated with image restoration and
also by the fact that the recognition performance, both in terms
of recognition accuracy and depth of field, is only slightly worse
than the recognition performance on restored images. Overall,
our experimental results show that wavefront coding can help
us increase the depth of field of an iris recognition system by a
factor of four.
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