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Abstract— Iris recognition can offer high-accuracy person
recognition, particularly when the acquired iris image is well-
focused. However, some practical applications require that the
iris recognition system perform well even when the eyes are
not in the focal plane of the camera lens. Therefore, iris
recognition using camera systems with a large depth of field
is very desirable. One approach to achieve extended depth of
field is to use a wavefront coding system as proposed by Dowski
and Cathey [1] which uses a cubic phase modulation mask
whose effect is a linear operation. The conventional approach
is to restore the iris images from the camera outputs and then
apply iris recognition algorithms to the restored iris images.
Some correlation filters are invariant to linear operations and
should maintain their recognition performance even when the
training and testing images are the unrestored (i.e., blurred
due to wavefront coding) images produced by the extended
depth of field imaging system. In this work we investigate the
recognition performance of correlation filters and compare it
with the popular iriscode method when the input images are
unrestored images produced by the wavefront coding imaging
system. We present results of simulations done with more than
1000 such unrestored wavefront coded iris images taken from
the ICE database.

I. INTRODUCTION

Sharply focused iris images are necessary to be able to
capture the rich texture detail of the iris which is where
the discriminative information lies. The performance of an
iris recognition system depends greatly on how well the
iris acquisition system captures this texture detail which
generally requires the iris to be within the focus volume
of the acquisition system. Hence conventional iris image
acquisition systems require user co-operation to a large
extent in positioning their head so that the eyes are located
within the focus volume of the imaging systems to get a
sharply focused image. For greater flexibility and robustness,
we would want the iris aquisition system to have a greater
depth of field.

The traditional solution to increased depth of focus (also
called depth of field) is to increase the f-number of the lens
which translates to using a smaller aperture. However, doing
so would increase the exposure time to allow sufficient light
to enter through the smaller aperture. Increased exposure
time introduces motion blur since it would be unrealistic to
expect the eyes to be perfectly still for the duration of the
exposure. Moreover, a smaller aperture also decreases the
effective resolution of the camera system due to diffraction.
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(a) MTF with no wavefront coding

(b) MTF with wavefront coding

Fig. 1: Mis-focus MTF

One way to achieve extended depth of focus without
sacrificing aperture size is to take advantage of computational
imaging which combines optics with digital signal process-
ing. To extend the depth of focus of an imaging system,
Dowski and Cathey [1][2] proposed the use of a phase mask.
The idea is to use phase modulation to encode the depth
information thereby increasing focus invariance along the
axis of the lens. Under mis-focus, unlike the Modulation
Transfer Function (MTF) of a conventional optical system,
the MTF of a system with a cubic phase mask has no nulls
(See Fig. 1). Avoiding MTF nulls is attractive since the total
entropy is conserved and there is no loss of information. This
means that, at least in theory we can recover the original
information and acheive greater depth of focus at the same
time. Many correlation filters (such as the minimum average
correlation energy (MACE) filter) can compensate for any



information preserving linear operation as long as the same
linear operation is applied on both the gallery and the probe
images. So this makes it particularly attractive to use correla-
tion filters for iris recognition on wavefront-coded imagery.
Unlike other iris recognition approaches, correlation filters
may allow us to use raw (or unrestored) image outputs from
the camera for iris recognition and thus avoid the complexity
and hardware associated with processing the camera outputs
to obtain restored iris images. In this paper, we will refer
to two types of iris images: conventional images are those
obtained without any wavefront coding and wavefront-coded
images refer to the raw output images (i.e., without restoring
the wavefront-coded images as is commonly done) from an
imaging system employing wavefront coding.

This paper is organised as follows. We first describe the
pre-processing done to the iris images followed by the feature
extraction employed. Next we describe the two kinds of
matching that we compare, namely iriscode and correlation
filters. Then we describe how we simulate the iris image data
and discuss the recognition results on this simulated data.
Finally we conclude with some observations and analysis of
our results.

II. PRE-PROCESSING
Before we extract texture features or perform matching

we need to pre-process the iris images. This involves seg-
mentation of the iris, normalization of the iris to be able to
compare irises of different sizes and removing eyelashes or
any other specularities.

A. Segmentation
The performance of iris recognition systems is greatly

dependent on the ability to isolate the iris from the other parts
of the eye like eyelids, eyelashes etc. This is generally done
through some variants of edge detection. Since the blurring
introduced by the image being out of focus smudges the edge
information to the point of there not being a discernible edge,
iris segmentation becomes a challenging task. To overcome
this problem to an extent, we use a region based active
contour segmentation [3] since it is more robust to blurring
than an edge based active contour. Fig.s 2 and 3 show some
of our segmentation results on iris images (obtained via
the simulations, to be explained in Section V) at various
distances from the focal plane of the camera system. Note
that at 0 cm, conventional iris images exhibit more detail than
wavefront-coded images. However, over the distance ranges
shown, conventional iris images exhibit more variability than
wavefront-coded iris images.

B. Normalization
Once the iris boundaries have been found, we map the iris

pattern into the polar domain as is popularly done. This has
two effects.

1) Normalizes different irises to the same size thus allow-
ing for proper matching.

2) Any rotation of the iris manifests as a linear shift in
the polar domain which can be handled easily by both
correlation filters and iriscode (via circular shifts).

(a) -4cm (b) -3cm (c) -2cm

(d) -1cm (e) 0cm (f) +1cm

(g) +2cm (h) +3cm (i) +4cm

Fig. 2: Examples of iris segmentation on conventional images

(a) -5cm (b) -4cm (c) -3cm

(d) -2cm (e) 0cm (f) +2cm

(g) +3cm (h) +4cm (i) +5cm

Fig. 3: Examples of iris segmentation on wavefront-coded
images

III. FEATURE EXTRACTION

Gabor filters tuned with the right parameters have been
found to be the most discriminative bandpass filters for
iris image feature extraction among a variety of wavelet
candidates [4]. A Gabor filter is a modulated Gaussian
envelope and is given by
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in the polar domain (ρ , φ ) where the filter is applied to the
iris pattern. Here θ denotes the wavelet orientation, σρ and
σφ denote the wavelet size in radial and angular directions,
respectively and ω denotes the modulation frequency of the
wavelet. By varying these parameters, the filters can be tuned
to extract features at different scales, rotations, frequencies
and translations. We use a set of these differently localized
Gabor filters as our feature extraction filter bank. The filter
bank has 2 scales and 4 orientations for a total of 8 channels
in our experiments. We also divide the unwrapped iris into
multiple patches when using correlation filters for matching
and the projections of these patches on the Gabor bases
are our features. We finally combine the recognition cues
(correlation peak sharpness metrics) of each patch to come
up with a final match score. Another point to note is that
the band pass filters we use for feature extraction have been
optimised on in-focus conventional iris images and we use
the same Gabor filters throughout our experiments.

IV. MATCHING
One of the goals of this work is to compare the perfor-

mance of the popular iriscode method [5][6][7] of matching
with correlation filter based matching.

A. Iriscode

The phase of the complex Gabor wavelet projections
obtained as explained in the previous section are quantized to
2 bits by mapping the phase to one of the four quadrants in
the complex plane. All the bits obtained this way constitute
an iriscode. Any two irises are compared by matching their
respective iriscodes. The matching is done by computing the
Hamming distance between the 2 binary iriscodes. There are
also corresponding mask bits to identify which bits in the
iriscode to use for matching. The mask bits are set to either 1
or 0 depending on whether the corresponding iriscode bits are
used or not used (e.g., due to eyelid occlusions) for matching.
When matching 2 iriscodes A and B with respective masks
mA and mB the dissimilarity d is defined as,

d =
||(A⊕B)∩mA∩mB||
||mA∩mB||

(2)

where ⊕ denotes an XOR operation and || || denotes the
weight (i.e., the number of nonzero elements) of the binary
pattern. Rotation of the eye is compensated for by matching
the the iriscodes at different relative shifts along the angular
axis and taking the minimum Hamming distance value.

B. Correlation Filters

A correlation filter is a template that is specifically de-
signed to recognize a particular pattern class represented by
a set of reference patterns [8][9]. A given query pattern
is matched against this template by performing a cross-
correlation. To make this efficient, the cross-correlation is

Fig. 4: Application of correlation filter to an input image

performed in the frequency domain taking advantage of the
Fast Fourier Transform (FFT).

C(x,y) = FT−1{FT{I(x,y)} ·F∗(u,v)} (3)

where I(x,y) is a query pattern and F(u,v) is the frequency
domain representation of the correlation filter.

The resulting cross-correlation output C(x,y) should con-
tain a sharp peak if the query is authentic and no such peak
if it is an impostor as shown in Fig. 4.

The principal advantages of using correlation filters are:
1) Generation of the whole correlation plane in one shot.
2) Graceful performance degradation in the presence of

noise or occlusions.
3) Can be designed to tolerate a variety of within-class

variations.
4) Closed form solution for the filters.
To quantify the degree of sharpness of the correlation peak

we use the peak-to-correlation (PCE) ratio defined as:

PCE =
peak−µ

σ
(4)

where µ and σ are the mean and standard deviation of the
correlation plane respectively.

There are a variety of advanced correlation filters to choose
from [10]. Among these MACE [11] filter and Optimal
Tradeoff Synthetic Discriminant Function (OTSDF) filter
[12] (a more general form of MACE filter) have been
found to perform well when applied to biometric recognition
problems [13][14][15].

In this work we use the OTSDF filter which provides an
optimal trade-off between the Average Correlation Energy
(ACE) and the Output Noise Variance (ONV). The ACE
is the energy in the correlation plane averaged over the
training images minimizing which suppresses the side lobes
resulting in sharp correlation peaks. Minimizing ONV
improves the filter’s tolerance towards noise. Formulating
this in a Lagrangian framework gives us a closed form
solution for the optimal trade-off filter.

Fusion OTSDF
Since our iris patterns are represented as multi-channel

features we can design one filter for each channel and
combine the resulting correlation plane outputs. However one
can do better by jointly optimizing the K filters [16], such



filters are referred to as “fusion correlation filters”. This leads
to

H = A−1X(X+A−1X)−1u (5)

where H is the frequncy domain representation of the cor-
relation filter, A = αS +(1−α)P̄ and S is the cross-power
spectral density matrix of the noise in the channels and P̄ is
the mean cross-power spectral density between the different
feature channels. See Appendix A for more details on fusion
OTSDF design and use.

V. SIMULATIONS

A. Database

In this work we used a subset of the Iris Challenge
Evaluation (ICE) dataset. Sixty one users were manually
selected such that most of the images of the user are either
in focus or close to being in focus. We avoided classes
with only one image in the database and classes with heavy
eyelash occlusions. In total our evaluation was done on
1061 images. This was done to ensure that the evaluation
is closer to a practical situation where the exact amount of
blurring is unknown and other factors like poor segmentation
affect recognition performance. The chosen images have
been used to simulate both the wavefront-coded images and
the conventional out of focus images. Fig. 5 and 6 show
some samples.

(a) (b) (c) (d)

Fig. 5: Examples of images used for evaluation

(a) (b) (c) (d)

Fig. 6: Examples of images avoided for evaluation. (a) too
close to boundary and would get worse when simulating iris
images nearer to camera (b) badly out of focus (c) very low
constrast between pupil and iris along with eyelid shadow
(d) eyelashes on the iris

B. Simulation Methodology

The simulation was done by convolving the in-focus
images with the point spread function (PSF) of both a normal
and wavefront-coded imaging system. This is given by

g = h∗ f +η (6)

where g is the blurred and noisy output image, h is the PSF
of the imaging system, f is the ground truth image and η is
the poisson noise which following the common model [17]
is given by

η =
√

h∗ f η1 +ση2 (7)

where η1 and η2 are N(0,1) random variables and σ is the
standard deviation of the image-independent noise.

The PSF model used for the two types of imagery is as
given in (8) and (10).

Conventional System:

h = |FT{P(x,y)e(iψ(x2+y2))}|2 (8)

where P(x,y) is 1 inside the pupil and 0 outside and the mis-
focus parameter ψ is given by

ψ =
πL2

4λ
(

1
f
− 1

do
− 1

di
) (9)

where L is the pupil diameter, λ is the wavelength of light
used, f is the focal length of the lens, do is the object
distance from the first principal plane of the lens and di is
the distance between the second principal plane of the lens
and the image plane.

Wavefront Coding System:

h = |FT{P(x,y)e(i(ψ(x2+y2)+φ(x,y)))}|2 (10)

where φ(x,y) is the phase function of the mask. In this work
we used a cubic phase mask φ = β (x3 + y3) with β being
the strength of the mask. One could also use other phase
functions but for this initial evaluation we chose the cubic
phase function for consistency with earlier work. The camera
parameters have been chosen based on published literature
[18][19][20].

C. Sample Images

The images were simulated to cover a distance of 10cm in
either direction from the focal plane with a step size of 1cm.
Fig. 7 show some sample iris images at various distances.

VI. RESULTS

In this section we present the results obtained using
iriscode (our baseline) as well as correlation filters based
iris pattern matching. All the experiments were carried out
on unrestored images because we want to study the feasibility
of avoiding the reconstruction step in wavefront-coded iris
imaging.

A. Experiments

We conducted two kinds of experiments corresponding to
slightly different scenarios.

1) Train using images in-focus (both conventional and
wavefront-coded) and test on images at various dis-
tances.
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Fig. 7: Sample Simulated images of both conventional and
cubic phase mask optical system

2) Train using sample images at different distances (can
be obtained from the in-focus image by simulation)
and test on images at various distances. In this case a
single fusion OTSDF filter is built just like in the first
scenario except that we use images at other distances
also for training. For iriscodes this is done by matching
the probe iriscode to template iriscodes at different
distances and taking the minimum Hamming distance
as the match score.

In the second scenario the templates are trained using
images from different distances, hence the algorithms are
expected to perform better than the first scenario where the
template sees only images in focus with and without the
phase mask. In our experiments we use images at distances
of -2cm to +2cm only from the focal plane in the template.
We do not use images at larger distances in our template
because poor segmentation at greater distances may affect
the overall filter design. However, there may not be such a
penalty in matching iriscodes. The matching complexity with
correlation filters would not change in the second scenario
because the matching is done with only one template while
the matching complexity increases linearly for iriscode. For
proper comparison we use the same training sets for both
iriscode and correlation filter based matching.

B. Results

We look at the impostor and authentic score statistics
(mean and standard deviation of match score plotted as
small squares and vertical bars, respectively) to determine
the improvement in the imaging distance obtained compared
to the conventional iris imaging system.

Scenario 1: Fig. 8 and 9 show the results of conventional
and cubic phase mask coded optical system, respectively.
Defining the operational range as the distance upto which

the error bars of the authentic and impostor scores do not
overlap, we compare the approximate operational range
of the iris recognition system both with and without the
phase mask in Table I. We also compare the performance
of the two different matching techniques (See Table II). We
see that both iriscode and correlation filters significantly
increase the operational distance of the recognition system.
Correlation filters, due to the added advantage of being
invariant to linear operations perform slightly better than
iriscode as reflected in the larger operational range. Tables
III and IV compare the recognition performance in both the
conventional scenario and the wavefront coded scenario.
Even though the increase in the depth of field of correlation
filters over iriscode may not appear to be large, the
recognition performance of correlation filters is better than
iriscode over the range of the depth of field when wavefront
coded imagery is used.

(a) Iriscode on conventional images

(b) Correlation Filters on conventional images

Fig. 8: Results of both Iriscode and Correlation Filters for
the conventional optical system in the first scenario.

Scenario 2: Fig. 10 and 11 show the results of con-
ventional and cubic phase mask coded optical system, re-
spectively. Tables V and VI compare the performance of
both iriscode and correlation filters on both conventional and
wavefront-coded imagery. We can see a clear increase in the



(a) Iriscode on unrestored wavefront-coded images

(b) Correlation Filters on unrestored wavefront-coded images

Fig. 9: Results of both Iriscode and Correlation Filters for
the coded optical system in the first scenario.

TABLE I: Operational Range Comparison (Scenario I)

Iriscode
Data Distance Operational Range
Type (in cm) (in cm)

Conventional -2.9 2.9 ∼5.8
Wavefront-Coded -4.8 5.3 ∼10.1

Correlation Filters
Data Distance Operational Range
Type (in cm) (in cm)

Conventional -2.7 2.7 ∼5.4
Wavefront-Coded -6.1 6.5 ∼12.6

TABLE II: Comaprison of Operational Range Improvement

Operational Conventional Wavefront Improvement
Range (in cm) (in cm)

Iriscode 5.8 10.1 ∼1.75
Correlation Filters 5.4 12.6 ∼2.34

operational range in the case of iriscode. While this is not
so apparent in the case of correlation filters, we notice an
increase in the separation between the mean authentic and
impostor scores for distances whose samples were used for
training the filter. This suggests that including samples from
other distances might further help increase the range. We
also notice that both correlation filters and iriscode perform

TABLE III: Recognition Performance Conventional
FRR at FAR in percentage

Distance Iriscode CF
(in cm) (1.0 and 0.1) (1.0 and 0.1)

-4 76.2 93.0 88.3 96.8
-3 69.2 93.0 64.8 82.6
-2 3.30 11.2 27.5 49.4
-1 0.56 0.67 0.56 1.00
0 0.44 0.67 0.60 0.90
1 1.10 1.30 0.70 1.10
2 5.00 15.6 23.2 47.5
3 68.7 93.6 64.7 82.7
4 78.2 93.7 88.6 97.3

TABLE IV: Recognition Performance Wavefront Coded
FRR at FAR in percentage

Distance Iriscode CF
(in cm) (1.0 and 0.1) (1.0 and 0.1)

-6 72.8 91.6 44.5 66.3
-5 37.9 59.7 8.90 15.3
-4 8.20 15.0 2.90 5.20
-3 3.50 6.80 1.60 2.80
-2 1.60 2.60 1.10 1.70
-1 1.50 2.30 0.68 1.20
0 1.10 1.30 0.56 1.10
1 0.90 1.70 0.68 1.20
2 1.70 2.10 1.20 1.60
3 3.50 3.90 1.40 2.80
4 7.50 93.7 2.30 4.80
5 23.3 38.5 5.90 10.5
6 62.1 82.2 24.4 42.7
7 87.4 97.3 69.2 84.8

better at distances slightly away from the focal plane than
when the iris is in focus. This is due to the fact that small
variations affect the appearance of the in-focus images more
than they affect the slightly blurred images. When the images
are slightly blurred all the extranous high frequency effects
like noise or other unwanted variations are smoothed out
even while preserving the underlying iris texture pattern.
This helps improve tolerance to slight variations leading to
better performance. Such an effect was also observed in
fingerprint recognition with correlation filters [21] where
higher resolution did not always yield better recognition
accuracy. However, as the blurring increases, the recognition
performance decreases as the texture detail starts disappear-
ing.

We also observed that a major challenge to increasing the
operational range of iris recognition systems comes from
iris segmentation which becomes increasingly difficult with

TABLE V: Operational Range Comparison (Scenario II)

Iriscode
Data Distance Operational Range
Type (in cm) (in cm)

Conventional -4.0 3.8 ∼7.8
Wavefront-Coded -5.5 6.0 ∼11.5

Correlation Filters
Data Distance Operational Range
Type (in cm) (in cm)

Conventional -3.6 3.5 ∼7.1
Wavefront-Coded -5.9 6.3 ∼12.2



(a) Iriscode on conventional images

(b) Correlation Filters on conventional images

Fig. 10: Results of both Iriscode and Correlation Filters for
the conventional optical system in the second scenario.

TABLE VI: Comparison of Operational Range Improvement

Operational Conventional Wavefront Improvement
Range (in cm) (in cm)

Iriscode 7.8 11.5 ∼1.5
Correlation Filters 7.1 12.2 ∼1.7

increasing distance from the focal plane. Improving the
segmentation would enable us to use the full power of the
matching techniques to get greater depth of focus without
modifying the existing matching techniques. In other words
we believe that segmentation is the key to increasing the
depth of field using the phase mask and without doing image
restoration.

VII. CONCLUSIONS AND FUTURE WORKS

Iris recognition technology can acheive very high match-
ing accuracy but still requires substantial user co-operation.
To ease this requirement on the user, we require that the
operational range of the iris acquisition system be larger than
what it is today. Wavefront coding offers a solution to acheive
this, but there have not been any large scale tests to quantify
and confirm the increase in the depth of field that can be
acheived. In this work we address this problem by using more
than 1000 images for evaluation without restoring the blurred

(a) Iriscode on unrestored wavefront-coded images

(b) Correlation Filters on unrestored wavefront-coded images

Fig. 11: Results of both Iriscode and Correlation Filters for
the coded optical system in the second scenario.

images thereby saving the additional computations required
for image restoration. Our results also show that correlation
filters are better suited to handle out of focus images better
than a simple Hamming distance based matching because
of the built-in tolerance of correlation filters to noise and
entropy-preserving linear operations.

We plan to conduct a more thorough investigation of
the application of wavefront coding to iris recognition.
This would include improved iris segmentation taking into
account the kind of blurring introduced by the phase mask,
finding optimum bandpass filters for feature extraction across
different distances and phase functions and phase function
optimisation with respect to recognition accuracy.
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APPENDIX A: Details of Fusion OTSDF

Let a pattern be represented by K feature channels. Taking
the discrete fourier transform of each channel and arranging
the DFT coefficients and correlation filter values into a vector



we have:

xi ,

 M
×
1

 Image DFT
coefficients,
channel i

hi ,

 M
×
1

 Filter
coefficients,
channel i

(11)
Vector x is formed by appending all the feature channels

for a training image. We do the same for the correlation filter
to get:

x ,


x1
x2
...

xK

 h ,


h1
h2
...

hK

 (12)

We now define X as a matrix containing the jth training
vector x( j) in the jth column:

X ,


x(1)

1 x(2)
1 · · · x(N)

1

x(1)
2 x(2)

2 · · · x(N)
2

...
...

...
x(1)

K x(2)
K · · · x(N)

K

 (13)

Average Correlation Energy (ACE): The correlation
plane energy by Parseval’s is defined as:

E = h+Ph

=


h1

h2
...

hK


+

x∗1x1 x∗1x2 · · · x∗1xK

x∗2x1 x∗2x2 · · · x∗2xK
...

...
...

x∗Kx1 x∗Kx2 · · · x∗KxK




h1

h2
...

hK

 (14)

Averaging over all the training data we have the Average
Correlation Energy defined as:

ACE = h+P̄h (15)

=


h1

h2

...
hK


+


1
N ∑i x(i)∗

1 x(i)
1 · · · 1

N ∑i x(i)∗
1 x(i)

K

1
N ∑i x(i)∗

2 x(i)
1 · · · 1
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2 x(i)

K
...

...
1
N ∑i x(i)∗

K x(i)
1 · · · 1

N ∑i x(i)∗
K x(i)

K




h1

h2

...
hK


Output Noise Variance (ONV): Let Sab contain the

cross-power spectral density between noise in channel a and
channel b. Now ONV is defined as:

ONV = h+Sh (16)

=


h1

h2
...

HK


+

S11 S12 · · · S1K

S21 S22 · · · S2K
...

...
...

SK1 SK2 · · · SKK




h1

h2
...

hK


The Lagrangian framework of the optimal tradoff between

the ACE and ONV gives:

h = A−1X(X+A−1X)−1u (17)

where h is the frequncy domain representation of the corre-
lation filter and A = αS+(1−α)P̄
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